
M A N N I N G

Chris Hay
Brian H. Prince

IN ACTION

Azure in Action

Azure in Action

CHRIS HAY
BRIAN H. PRINCE

M A N N I N G
Greenwich

(74° w. long.)

iv
For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
180 Broad Street
Suite 1323
Stamford, CT 06901
Email: orders@manning.com

©2011 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

Manning Publications Co. Development editor: Lianna Wlasiuk
180 Broad Street Copyeditor: Joan Celmer
Suite 1323 Proofreader: Katie Tennant
Stamford, CT 06901 Illustrator: Martin Murtonen

Designer: Marija Tudor

ISBN: 9781935182481

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 12 11 10

brief contents
PART 1 WELCOME TO THE CLOUD .. 1

1 ■ Getting to know Windows Azure 3

2 ■ Your first steps with a web role 27

PART 2 UNDERSTANDING THE AZURE SERVICE MODEL............. 49
3 ■ How Windows Azure works 51

4 ■ It’s time to run with the service 78

5 ■ Configuring your service 94

PART 3 RUNNING YOUR SITE WITH WEB ROLES. 111

6 ■ Scaling web roles 113

7 ■ Running full-trust, native, and other code 139

PART 4 WORKING WITH BLOB STORAGE153
8 ■ The basics of BLOBs 155

9 ■ Uploading and downloading BLOBs 181

10 ■ When the BLOB stands alone 209
v

BRIEF CONTENTSvi
PART 5 WORKING WITH STRUCTURED DATA 237
11 ■ The Table service, a whole different entity 239

12 ■ Working with the Table service REST API 265

13 ■ SQL Azure and relational data 296

14 ■ Working with different types of data 315

PART 6 DOING WORK WITH MESSAGES................................... 333
15 ■ Processing with worker roles 335

16 ■ Messaging with the queue 357

17 ■ Connecting in the cloud with AppFabric 379

18 ■ Running a healthy service in the cloud 404

contents
preface xix
acknowledgments xxi
about this book xxiv
author online xxvi
about the authors xxvii
about the cover illustration xxix

PART 1 WELCOME TO THE CLOUD................................. 1

1 Getting to know Windows Azure 3
1.1 What’s the Windows Azure platform? 4

Windows is in the title, so it must be an operating system 5
Hosting and running applications the Azure way 6

1.2 Building your first Windows Azure web application 9
Setting up your environment 9 ■ Creating a new project 10
Modifying the web page 12 ■ Running the web page 12

1.3 Putting all the Azure pieces together 13
How the load balancer works 13 ■ Creating worker roles 14
How the fabric and the Fabric Controller work 14
vii

CONTENTSviii
1.4 Storing data in the cloud with Azure 15
Understanding Azure’s shared storage mechanism 16 ■ Storing
and accessing BLOB data 16 ■ Messaging via queues 17
Storing data in tables 18

1.5 Why run in the cloud? 18
Treating computing power as a utility service 19 ■ Simplified
data-center management 21

1.6 Inside the Windows Azure platform 23
SQL Server capability in the cloud 23 ■ Enterprise services
in the cloud 25

1.7 Summary 26

2 Your first steps with a web role 27
2.1 Getting around the Azure SDK 28

Exploring the SDK folders 29 ■ Using the Cloud Service project
templates 29 ■ Running the cloud locally 31 ■ How the local
and cloud environments differ 32

2.2 Taking Hello World to the next level 33
Creating the project 33 ■ Laying down some markup with
XHTML and a CSS 34 ■ Binding your data in the code-
behind 36 ■ Just another place to run your code 37
Configuring the Azure service model 37 ■ Running the website in
the local development fabric 38

2.3 Deploying with the Azure portal 39
Signing up for Azure 39 ■ The Azure portal 40 ■ Setting up
your service online 41 ■ Putting on your logging boots 43
Setting up your storage environment 43 ■ Packaging and
deploying your application 45 ■ Moving to production 47

2.4 Summary 47

PART 2 UNDERSTANDING THE AZURE SERVICE MODEL 49

3 How Windows Azure works 51
3.1 The big shift 51

The data centers of yore 52 ■ The latest Azure data centers 53
How many administrators do you need? 54 ■ Data center: the next
generation 55

3.2 Windows Azure, an operating system for the cloud 56

CONTENTS ix
3.3 The Fabric Controller 57
How the FC works: the driver model 58 ■ Resource allocation 58
Instance management 59

3.4 The service model and you 59
Defining configuration 59 ■ Adding a custom configuration
element 60 ■ Centralizing file-reading code 61 ■ The many
sizes of roles 62

3.5 It’s not my fault 63
Fault domains 63 ■ Update domains 63 ■ A service model
example 64

3.6 Rolling out new code 64
Static upgrades 65 ■ Rolling upgrades 66

3.7 The bare metal 68
Free parking 68 ■ A special blend of spices 69 ■ Creating
instances on the fly 69 ■ Image is everything 71

3.8 The innards of the web role VM 72
Exploring the VM details 72 ■ The process list 74 ■ The
hosting process of your website (WaWebHost) 75 ■ The health of
your web role (RDAgent) 76

3.9 Summary 76

4 It’s time to run with the service 78
4.1 Using the Windows Azure Service Management API 78

Adding the ServiceRuntime assembly to your application 79
Is your application running in Windows Azure? 80

4.2 Defining your service 81
The format of the service definition file 81 ■ Configuring the
endpoint of your web role 82 ■ Configuring trust level, instances,
and startup action 86 ■ Configuring local storage 87

4.3 Setting up certificates in Windows Azure 90
Generating a certificate 90 ■ Adding certificates 91
Configuring your HTTPS endpoint to use the certificate 92

4.4 Summary 93

5 Configuring your service 94
5.1 Working with the service configuration file 94

The format of the service configuration file 95 ■ Configuring
standard settings 96 ■ Configuring runtime settings 98

CONTENTSx
5.2 Handling configuration at runtime 102
Modifying configuration settings in the Azure portal 102
Tracking service configuration changes 103

5.3 Configuring non-application settings 104
Database connection strings 104 ■ Application build
configuration 104 ■ Tweakable configuration 104
Endpoint configuration 105

5.4 Developing a common code base 105
Using the RoleEnvironment.IsAvailable property 106
Pluggable configuration settings using inversion of control 107

5.5 The RoleEnvironment class and callbacks 109
5.6 Summary 110

PART 3 RUNNING YOUR SITE WITH WEB ROLES 111

6 Scaling web roles 113
6.1 What happens to your web server under extreme

load? 113
Web server under normal load 114 ■ Simulating extreme
load 115 ■ How the web server responds under extreme load 116
Handling increased requests by scaling up or out 117

6.2 How the load balancer distributes requests 118
Multi-instance sample application 119 ■ The development fabric
load balancer 120 ■ Load balancing in the live
environment 124

6.3 Session management 127
How do sessions work? 127 ■ Sample session application 128
In-process session management 130 ■ Table-storage session state
sample provider 132

6.4 Cache management 135
In-process caching with the ASP.NET cache 135 ■ Distributed
caching with Memcached 136 ■ Cache extensibility in
ASP.NET 4.0 137

6.5 Summary 138

7 Running full-trust, native, and other code 139
7.1 Enabling full-trust support 140

CONTENTS xi
7.2 FastCGI in Windows Azure 141
Enabling FastCGI in your local cloud environment 142
Configuring Azure for FastCGI and PHP 142 ■ Setting up
HelloAzureWorld.php 143

7.3 External processes in Windows Azure 146
Spawning a sample process 147 ■ Using BLOB storage 148

7.4 Calling native libraries with P/Invoke 149
Getting started 150 ■ Calling into the method 151

7.5 Summary 152

PART 4 WORKING WITH BLOB STORAGE 153

8 The basics of BLOBs 155
8.1 Storing files in a scaled-out fashion is a pain in the NAS 156

Traditional approaches to BLOB management 157 ■ The BLOB
service approach to file management 160

8.2 A closer look at the BLOB storage service 163
Accessing the BLOB (file) 163 ■ Setting up a storage
account 164 ■ Registering custom domain names 164
Using containers to store BLOBs 166

8.3 Getting started with development storage 167
SQL Server backing store 168 ■ Getting around in the
development storage UI 168

8.4 Developing against containers 169
Accessing the StorageClient library 170 ■ Accessing development
storage 171 ■ Creating a container 173 ■ Listing
containers 175 ■ Deleting a container 177

8.5 Configuring your application to work against the live
service 178
Switching to the live storage account 178 ■ Configuring the
access key 179

8.6 Summary 180

9 Uploading and downloading BLOBs 181
9.1 Using the REST API 181

Listing BLOBs in a public container using REST 182
Authenticating private requests 185

CONTENTSxii
9.2 Managing BLOBs using the StorageClient library 188
Listing BLOBs using the storage client 189 ■ Uploading
BLOBs 191 ■ Deleting BLOBs 192

9.3 Downloading BLOBs 193
Downloading BLOBs from a public container 193
Downloading BLOBs from a private container using the
storage client 193

9.4 Integrating BLOBs with your ASP.NET websites 195
Integrating ASP.NET websites with table-driven BLOB
content 195 ■ Integrating protected, private content 196

9.5 Using local storage with BLOB storage 199
Using a local cache 199 ■ Defining and accessing local storage 199
Updating your HTTP handler to use local storage 200
Checking properties of a BLOB without downloading it 201
Improving your handler to check the last modified time 202
Adding and returning custom metadata 203

9.6 Copying BLOBs 204
Copying files via the StorageClient library 206

9.7 Setting shared access permissions 206
Setting shared access permissions on a container 207

9.8 Summary 208

10 When the BLOB stands alone 209
10.1 Hosting static HTML websites 209

Creating a static HTML website 210 ■ Publishing your website to
BLOB services 212

10.2 Hosting Silverlight applications in BLOB storage 215
Hosting the Silverlight Spectrum emulator 215 ■ Communicating
with third-party sites 217

10.3 Using BLOB storage as a media server 223
Building a Silverlight or WPF video player 224 ■ A WPF-based
adaptive-streaming video player 225 ■ A Silverlight-based
chunking media player 228

10.4 Content delivery networks 232
What’s a CDN? 232 ■ CDN performance advantages 233
Using the Windows Azure CDN 234

10.5 Summary 236

CONTENTS xiii
PART 5 WORKING WITH STRUCTURED DATA 237

11 The Table service, a whole different entity 239
11.1 A brief overview of the Table service 240
11.2 How we’d normally represent entities outside of Azure 241

How we’d normally represent an entity in C# 241 ■ How we’d
normally store an entity in SQL Server 242 ■ Mapping an entity
to a SQL Server database 243

11.3 Modifying an entity to work with the Table service 244
Modifying an entity definition 244 ■ Table service
representation of products 245 ■ Storing completely
different entities 247

11.4 Partitioning data across lots of servers 249
Partitioning the storage account 249 ■ Partitioning tables 250

11.5 Developing with the Table service 252
Creating a project 252 ■ Defining an entity 253 ■ Creating a
table 253

11.6 Doing CRUDy stuff with the Table service 256
Creating a context class 257 ■ Adding entities 258
Listing entities 260 ■ Deleting entities 261 ■ Updating
entities 263

11.7 Summary 264

12 Working with the Table service REST API 265
12.1 Performing storage account operations using REST 266

Listing tables in the development storage account using the REST
API 266 ■ Deleting tables using the REST API 269
WCF Data Services and AtomPub 270 ■ Creating a table using
the REST API 271

12.2 Authenticating requests against the Table service 273
Shared Key authentication 273 ■ Shared Key Lite
authentication 274

12.3 Modifying entities with the REST API is CRUD 275
Inserting entities 275 ■ Deleting entities 277 ■ Updating
entities 279

12.4 Batching data 281
Entity group transactions 282 ■ Retries 284

CONTENTSxiv
12.5 Querying data 284
Retrieving all entities in a table using the REST API 285
Querying with LINQ 288 ■ Filtering data with the REST
API 288 ■ Filtering data with LINQ 290 ■ Selecting data
using the LINQ syntax 292 ■ Paging data 294

12.6 Summary 295

13 SQL Azure and relational data 296
13.1 The march of SQL Server to the cloud 297
13.2 Setting up SQL Azure 297

Creating your database 298 ■ Connecting to your database 299

13.3 Size matters 300
Partitioning your data 301 ■ Sharding your data for easier
scale 302

13.4 How SQL Azure works 303
SQL Azure from a logical viewpoint 304 ■ SQL Azure from a
physical viewpoint 304

13.5 Managing your database 305
Moving your data 305 ■ Controlling access to your data with
the firewall 307 ■ Creating user accounts 308

13.6 Migrating an application to SQL Azure 309
Migrating the traditional way 309 ■ Migrating with the
wizard 310

13.7 Limitations of SQL Azure 311
13.8 Common SQL Azure scenarios 312

Far-data scenarios 312 ■ Near-data scenarios 313
SQL Azure versus Azure Tables 313

13.9 Summary 314

14 Working with different types of data 315
14.1 Static reference data 316

Representing simple static data in SQL Azure 316 ■ Representing
simple static data in the Table service 318 ■ Performance
disadvantages of a chatty interface 320 ■ Caching static
data 321

CONTENTS xv
14.2 Storing static reference data with dynamic data 323
Representing the shopping cart in SQL Azure 323 ■ Partitioning
the SQL Azure shopping cart 324 ■ Representing the shopping
cart’s static data in the Table service 326

14.3 Joining dynamic and infrequently changing data together 329
Duplicating data instead of joining 329 ■ Client-side joining of
uncached data 330

14.4 Summary 331

PART 6 DOING WORK WITH MESSAGES. 333

15 Processing with worker roles 335
15.1 A simple worker role service 336

No more Hello World 337

15.2 Communicating with a worker role 338
Consuming messages from a queue 339 ■ Exposing a service to the
outside world 340 ■ Inter-role communication 344

15.3 Common uses for worker roles 345
Offloading work from the frontend 345 ■ Using threads in a
worker role 347 ■ Simulating worker roles in a web role 347
State-directed workers 349

15.4 Working with local storage 353
Setting up local storage 353 ■ Working with local storage 354

15.5 Summary 355

16 Messaging with the queue 357
16.1 Decoupling your system with messaging 358

How messaging works 358 ■ What is a message? 360
What is a queue? 361 ■ StorageClient and the REST API 362

16.2 Working with basic queue operations 363
Get a list of queues 364 ■ Creating a queue 365 ■ Attaching
metadata 365 ■ Deleting a queue 366

16.3 Working with messages 366
Putting a message on the queue 367 ■ Peeking at messages 367
Getting messages 368 ■ Deleting messages 368

CONTENTSxvi
16.4 Understanding message visibility 369
About message visibility and invisibility 369 ■ Setting visibility
timeout 370 ■ Planning on failure 370 ■ Use idempotent
processing code 370

16.5 Patterns for message processing 371
Shared counters 371 ■ Work complete receipt 373 ■ Asymmetric
queues versus symmetric queues 373 ■ Truncated exponential
backoff 374 ■ Queue creation on startup 376 ■ Dynamic
queues versus static queues 376 ■ Ordered delivery 376 ■ Long
queues 377 ■ Dynamically scaling to meet queue demand 377

16.6 Summary 378

17 Connecting in the cloud with AppFabric 379
17.1 The road AppFabric has traveled 380

The two AppFabrics 380 ■ Two key AppFabric services 380

17.2 Controlling access with ACS 381
Identity in the cloud 381 ■ Working with actors 382
Tokens communicate authorization 383 ■ Making claims about
who you are 384

17.3 Example: A return to our string-reversing service 385
Putting ACS in place 385 ■ Reviewing the string-reversal
service 387 ■ Accepting tokens from ACS 388 ■ Checking the
token 389 ■ Sending a token as a client 390 ■ Attaching the
token 392 ■ Configuring the ACS namespace 392 ■ Putting it
all together 396

17.4 Connecting with the Service Bus 397
What is a Service Bus? 397 ■ Why an ESB is a good idea in the
cloud 398

17.5 Example: Listening for messages on the bus 400
Connecting the service to the bus 400 ■ Connecting to
the service 401

17.6 The future of AppFabric 402
17.7 Summary 402

18 Running a healthy service in the cloud 404
18.1 Diagnostics in the cloud 405

Using Azure Diagnostics to find what’s wrong 405
Challenges with troubleshooting in the cloud 406

CONTENTS xvii
18.2 Diagnostics in the cloud is just like normal (almost) 406
Managing event sources 407 ■ It’s not just for diagnostics 408

18.3 Configuring the diagnostic agent 409
Default configuration 411 ■ Diagnostic host configuration 411
The other data sources 416 ■ Arbitrary diagnostic sources 418

18.4 Transferring diagnostic data 419
Scheduled transfer 419 ■ On-demand transfer 420

18.5 Using the service management API 421
What the API doesn’t do 422 ■ Setting up the management
credentials 422 ■ Listing your services and containers 424
Automating a deployment 426 ■ Changing configuration and
dynamically scaling your application 430

18.6 Better together for scaling 432
The thermostat 433 ■ The control system 434 ■ Risks and
managing them 434 ■ Managing service health 435

18.7 Summary 436

index 437

preface
Both of us have a passion for cloud computing and Windows Azure, and in this book
we’d like to share with you what we’ve learned from working with the technology. We
want to show you how to get the most out of Azure and how to best use the cloud.

 Writing a book is a far more complex project than either of us expected, involving
a lot of people, a lot of collaboration, and plenty of late nights hunched over a key-
board. We did it because we wanted to help you understand what happens inside
Azure, how it works, and how you can leverage it as you work with your applications.
We wanted to show you not only how to run your complete system in the cloud, but all
the other ways you can leverage the cloud, specifically by using hybrid applications
and distributed applications.

 As we worked with all sorts of developers in our day jobs, we knew they could easily
learn how to use the cloud, but they were all scared. We hadn’t seen people so afraid
of a new technology that could help so much since web services came onto the scene
years ago. We knew if developers would take a minute to play with Azure just a little
bit, it would become less scary and more approachable. Ultimately, we wanted this
book to answer the question, “What can Azure do, and why do I care?” We hope we’ve
succeeded.

 We’ve leveraged a lot of resources to write this book, and you might have been one
of them. We worked in forums, we worked with other cloud techs, we crawled through
every scrap of public Azure information we could find (even obscure blog posts in the
dark corners of the internet), and we had personal conversations with Azure team
members and anyone else we could get to take our calls. We leveraged our own expe-
rience and insight. Sometimes we guessed at how things work based on how we would
xix

PREFACExx
have built Azure, and then pushed Microsoft to give us more details to see if we were
right. We wrote a lot of code, and tried out ideas that we would get asked about at con-
ferences, in forums, over email, and as responses to our articles.

 The rest is history, with about a year of writing, rewriting, reviews, intense discus-
sion, and coding. We faced two big challenges as a writing team. The first was PDC 2009.
We knew that would be the coming-out party for Windows Azure with its official 1.0
release, and that a lot of what we had written up to that point would change. This
involved rewriting most of our code, retaking all our screen shots, and changing a lot
of our text. The second challenge was the time zone differences between us. With up
to fourteen time zones separating us at times, our combined travel schedules exacer-
bated the time zone challenge. Much of this book was written in airports, hotels, at con-
ferences, during late weekend hours, and at every other conceivable time and place.

 Windows Azure was released for commercial availability on February 1, 2010, and
by all accounts has been a huge success. Microsoft won’t publicly state how many
applications have been deployed to Azure, but you can infer some trends from the
case studies and press releases they make available. It looks like tens of thousands of
applications (from small test apps to major internet-scale applications) have been
deployed to Azure globally. The Azure teams ship new features about every 2_3
months. As a developer, it’s exciting to see so much innovation coming out of Micro-
soft on a platform you use. It’s gratifying to see the features that customers have asked
for being deployed.

 For book authors, the pace can be a little grueling, with things changing in the
technology all the time, but maybe that just sets us up for a second edition. We hope
you enjoy the book.

acknowledgments
We would like to thank all the people who helped us during the writing process; their
input made this a much better book. First on the list is our amazing editor at Man-
ning, Lianna Wlasiuk. She showed an endless amount of patience and had a seem-
ingly inexhaustible supply of the proverbial red ink. Her feedback and guidance
turned these cloud geeks into writers.

 Secondly, a big thanks to Mike Stephens. He’s a great guy who did an amazing
job in shaping this project. We’d also like to thank our publisher Marjan Bace for his
insight and vision. Those early conversations with him helped us go in the right
direction. And thanks to Christina Rudhoff for kicking off the book in the first
place, and to Mary Piergies for her management of the production process. You guys
are awesome.

 We would also like to thank the other staff at Manning. While any author can ship
a book, Manning knows that shipping a great book is a team sport, and they have an
excellent team in place. Their constant support and guidance—and the challenge to
push the book further—are greatly appreciated.

 There’s another group of people who were key to making this book successful, the
group of reviewers that read the manuscript four or five times over the past year,
pointing out weak parts of the story, plot holes, and places where better code samples
could be provided. We’d like to thank James Hatheway, Alex Thissen, Scott Turner,
Darren Neimke, Christian Siegers, Margriet Bruggeman, Nikander Bruggeman, Eric
Nelson, Ray Booysen, Jonas Bandi, Frank Wang, Wade Wegner, Mark Monster, Lester
Lobo, Shreekanth Joshi, Berndt Hamboeck, Jason Jung, and Kunal Mittal.
xxi

ACKNOWLEDGMENTSxxii
 Special thanks to Michael Wood who served as the technical proofreader of the
book, reviewing it again shortly before it went to press and testing the code. We
couldn’t have done it without you.

 Our early readers, people who bought the book through the Early Access pro-
gram, before it was even done, were a big help too. They suffered through drafts,
impartial chapters, and early cuts of code. Their feedback in the forums was critical to
where we went with the book.

CHRIS HAY

I don’t want this to sound like an Oscar acceptance speech (boo hoo, I want to thank
my goldfish, blah blah blah), but it’s gonna be a little like that as I really do want to
call out a few folks. I guess I lose my right to laugh at those blubbering celebrities in
the future.

 The biggest thanks of all go to my wonderful wife, who woke up one morning to dis-
cover that due to the UK/US time zone difference, I had negotiated a book deal whilst
she was sleeping. In spite of this, she gave me her full support, without which this book
would never have happened. She is totally awesome and I love her very much. Thank
you, Katy, for being so cool and supportive.

 I want to apologize to my dogs (Sascha and Tufty) for the impact on their walking
time and thank them for distracting me when I got bogged down with too much
work. They brought me their bouncy balls and even figured out how to shut down my
computer.

 Big thanks to my parents and my brother (please don’t read anything into the
order of thanks; you really don’t come after the dogs). Thanks for the great start in
life, especially buying me that ZX81 when I was 4 years old.

 Thanks to Nathan for being my sounding board; truly appreciated it, dude.
 Thanks to Brian and Michael for doing the production work on the book while I

was working 18-hour days in India. You guys are awesome, thank you.
 Santa Claus, thank you for bringing me presents every year, and Tooth Fairy, thank

you for making tooth loss more bearable.
 I’d like to thank all the guys at NxtGenUG (especially Rich, Dave, John, and Allis-

ter) for their support. P.S. If you have never gone to a .NET User Group then be sure
to do so—it’s a lot of fun. Big thanks to the UK/US community in general (you guys
know who you are, thank you).

 Also thanks to Girls Aloud, the Pussycat Dolls, and Alesha Dixon for making cool
music and helping me keep my sanity throughout the writing process. And if you are
reading this book, then something has gone wrong with the universe which will
require The Doctor to fix.

 Finally, thanks to you, dear reader, for buying the book. I love you, kiss, kiss, kiss,
boo hoo, wah wah ;)

ACKNOWLEDGMENTS xxiii
BRIAN H. PRINCE
I started learning how to write code when I was ten. My parents were supportive and
understanding when they figured out that their middle son wasn’t normal, that he was
a geek. Back then, geeks hadn’t risen to their current social prominence. They picked
me up after work from UMF, and they didn’t kick me out of the house after I caused a
small electrical fire while trying to control the box fan in my room with my CoCo 3.
Thanks, Mom and Dad. A few years later, one of my aunts suggested I stick with com-
puters as I grew up. She expected they would be important in the future. That sounds
like a trivial prediction today, but back then, it seemed like something out of Nostrad-
amus’s writings.

 I also want to thank everyone at Microsoft for their encouragement, including my
manager, Brian, who supported me in the extra work that writing a book takes.

 Above all, I owe a tremendous debt to my family. My kids, Miranda and Elliot, kept
me from totally disappearing into my office for 10 months with regular forced breaks.
Elliot would come in and declare a 15-minute recess to go and play Xbox with him.
Miranda would come in and write cute notes of support on my whiteboard or tell me
about that latest book she was reading. Thanks kids, you’re the best!

 But the one person I owe the most to is my beautiful wife. She kept me motivated;
she gave me the time and quiet to write when I needed to write and the push to take a
break when I needed to release pressure. I’d heard rumors about how hard it is to live
with an author in the house from friends who gave me advice along the way (thanks
Bill, Jim, and Jason). Without her I wouldn’t have been able to complete this huge
project. She spent hours helping me simplify the story, revise the approaches, and
dream up segues. Joanne, I would not be without you, and without you I would not be.

about this book
This book will teach you about Windows Azure, Microsoft’s cloud computing plat-
form. We’ll cover all aspects and components of Windows Azure from a developer’s
point of view.

 The book is written from the perspective of a .NET developer who’s using C#. We
feel that most developers using Azure will be using .NET. Everything in this book
applies to any platform that uses Azure. You’ll need to use the appropriate SDK for
your development tools and platform of choice.

 You should be fairly familiar with .NET, but you don’t have to be an expert. We
expect a developer with a few years of experience to be able to get the most out of this
book. Someone new to development, or perhaps even a manager, can still read the
book to get a grasp of the broad concepts of Azure. If that’s your situation, skip over
the code samples and try to understand what the moving parts are.

Roadmap

This book is broken into six parts, each with its own focus.
 Part 1 is titled “Welcome to the cloud” and that’s exactly what it is: a welcome to

the world of cloud computing. Chapters 1 and 2 explain what cloud computing is, and
what the big moving parts of Windows Azure are. You’ll build and deploy some simple
applications in this part, just to whet your appetite.

 Part 2 is called “Understanding the Azure service model.” Chapter 3 gives you a
peek behind the curtain and shows you how Azure works. Chapters 4 and 5 cover how
to run and configure your applications in Azure.
xxiv

ABOUT THIS BOOK xxv
 Part 3, “Running your site with web roles,” covers running web applications in
Azure. This part includes chapter 6, which describes scaling your application, and
chapter 7, which covers using native code in Azure.

 Part 4 is called “Working with BLOB storage,” and covers the first part of Windows
Azure storage, BLOBs. Chapter 8 discusses the conceptual basics of BLOBs, chapter 9
covers how to work with them in your code, and chapter 10 tells you when to use
BLOBs outside Azure.

 Part 5, “Working with structured data,” tells you all about Windows Azure tables
and SQL Azure. Chapters 11 and 12 focus on tables, chapter 13 dives into SQL Azure,
and chapter 14 takes a broader look at how to work with data in the cloud and how to
make decisions on what strategies to use.

 Part 6, titled “Doing work with messages,” covers the last several parts of Azure,
including specialized aspects of using worker roles, which is detailed in chapter 15. We
discuss working with queues in chapter 16. Connecting your applications together
and securing your services are delved into in chapter 17. Finally, chapter 18 describes
how to work with diagnostics and how to manage your infrastructure in the cloud.

About the source code

All source code in listings or in text is in a fixed-width font like this to separate
it from ordinary text. Code annotations accompany many of the listings, highlighting
important concepts. In some cases, numbered bullets link to explanations that follow
the listing.

 Source code for all working examples in this book is available for download from
the publisher’s website at www.manning.com/AzureinAction.

 To work with the sample code in this book, you’ll need Windows Vista, Windows 7,
or Windows Server 2008. You’ll also need either Visual Studio 2008 or 2010. We used
VS2010 in this book for samples and screen shots. Additionally, you need to install the
Azure SDK and the AppFabric SDK. Both of these can be found at Azure.com.

http://www.manning.com/AzureinAction

Author Online
The purchase of Azure in Action includes free access to a private forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the author and other users. You can access and subscribe
to the forum at www.manning.com/AzureinAction. This page provides information
on how to get on the forum once you’re registered, what kind of help is available, and
the rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and authors can take place.
It isn’t a commitment to any specific amount of participation on the part of the
authors, whose contributions to the book’s forum remain voluntary (and unpaid). We
suggest you try asking the authors some challenging questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.
xxvi

about the authors
Chris Hay is a Microsoft MVP in Client App Dev, an international conference speaker,
and cofounder of a .NET usergroup in Cambridge, UK (http://nxtgenug.net/). He
has spent part of the past year working and living in India. Brian H. Prince is an Archi-
tect Evangelist for Microsoft, cofounder of the nonprofit organization CodeMash
(www.codemash.org), and a speaker at various regional and national technology
events. He lives in Westerville, Ohio. In their own words, here's what they say about
how they came to Azure.

CHRIS HAY
My day job involves building some of the largest m-commerce systems in the world.
When Microsoft announced Windows Azure to the world at the Professional Develop-
ers Conference in Los Angeles in 2008, I immediately thought of how I could use the
cloud as part of the systems I was actively building.

 Of all of the key scenarios for using the cloud, dynamic scaling is one of the most
well-known. I was hoping that the promise of massive numbers of servers and a simpli-
fied platform would be able to meet my enormous scale needs, while making it easier
to build large-scale systems. Azure offered the promise of being able to deploy an
application into the cloud and have an automated deployment and provisioning sys-
tem, with a complete abstraction of the underlying physical infrastructure. This book
is focused on exploring those promises, and seeing how they worked out.

 Coupling this newfound passion with my long-held desire to someday write a book,
I settled down to write the proposal that I would send to Manning, pitching my idea
for a book titled Azure in Action. And a year later, here it is!
xxvii

ABOUT THE AUTHORSxxviii
BRIAN H. PRINCE
While working for Microsoft in recent years, I found myself spending more and more
of my time focusing on Windows Azure (or Red Dog, as it was called internally at
Microsoft at the time) and cloud computing. I was already at work on another In Action
book when I made a comment in one of my many meetings with Manning that I was
surprised they weren’t planning a book for each piece of the upcoming Microsoft
cloud platform. Thinking that writing my first book ever wasn’t enough work, I further
commented that I would love to get involved and help with the Azure book.

 This simple comment initiated a lot of work for the editors at Manning as they
started looking for experienced authors who could write a series of books on Micro-
soft’s cloud platform. They approached me to see if I would pitch in and help write
Azure in Action with Chris. I agreed, and after a few chats with Chris over Skype, we
finalized the draft table of contents and submitted it to Manning. The rest is history
and you are now holding that book in your hands.

about the cover illustration
The figure on the cover of Azure in Action is captioned “Woman with child from Dur-
devac.” The illustration is taken from a reproduction of an album of Croatian tradi-
tional costumes from the mid-nineteenth century by Nikola Arsenovic, published by
the Ethnographic Museum in Split, Croatia, in 2003. The illustrations were obtained
from a helpful librarian at the Ethnographic Museum in Split, itself situated in the
Roman core of the medieval center of the town: the ruins of Emperor Diocletian’s
retirement palace from around AD 304. The book includes finely colored illustrations
of figures from different regions of Croatia, accompanied by descriptions of the cos-
tumes and of everyday life.

 The village of Durdevac is near the town of Osijek in Slavonia, a geographical and
historical region in eastern Croatia. Women in Slavonia were known for their intricate
embroidery and sewing skills, and everything they wore was made by hand requiring
the weaving of textiles and dyeing of wool. Slavonian women typically wore long white
skirts and white linen shirts with a collar, topped with long black and brown vests
embroidered along the edges in wool of different colors, with white headscarves and
necklaces made of red coral beads. The long aprons that completed the traditional
costume were elaborately embroidered with colorful patterns of flowers or geometric
designs.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by
region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants
of different continents, let alone of different hamlets or towns separated by only a few
xxix

ABOUT THE COVER ILLUSTRATIONxxx
miles. Perhaps we have traded cultural diversity for a more varied personal life—cer-
tainly for a more varied and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with
book covers based on the rich diversity of regional life of two centuries ago, brought
back to life by illustrations from old books and collections like this one.

Part 1

Welcome to the cloud

Part 1 is all about dipping your toes into the water and getting ready to dive
in headfirst.

 We cover what Azure is in chapter 1—what the moving parts are, and why
people are so excited about cloud computing.

 We throw you in the deep end of the pool in chapter 2, building and deploy-
ing—step-by-step—your first cloud application. We’ve all written Hello, World
apps; after you’ve read part 1, you’ll begin to see how you can easily scale them
to hundreds of servers.

Getting to know
Windows Azure
Imagine a world where your applications were no longer constrained by hardware
and you could consume whatever computing power you needed, when you needed
it. More importantly, imagine a world where you paid only for the computing
power that you used.

 Now that your imagination is running wild, imagine you don’t need to care
about managing hardware infrastructure and you can focus on the software that
you develop. In this world, you can shift your focus from managing servers to man-
aging applications.

This chapter covers
� Overview of Windows Azure

� Building your first Windows Azure web role

� Windows Azure infrastructure

� How Windows Azure implements core cloud
concepts

� Flagship Windows Azure platform services
3

4 CHAPTER 1 Getting to know Windows Azure
 If this is the sort of thing you daydream about, then you should burn your server
farm and watch the smoke form into a cloud in the perfect azure sky. Welcome to the
cloud, and welcome to Windows Azure. We also suggest that if this is the sort of thing
you daydream about, you might want to lie to your non-IT friends.

 We’ll slowly introduce lots of new concepts to you throughout this book, eventually
giving you the complete picture about cloud computing. In this chapter, we’ll keep
things relatively simple. As you get more comfortable with this new paradigm, and as
the book progresses, we’ll introduce more of Azure’s complexities. To get the ball roll-
ing, we’ll start by looking at the big Azure picture: the entire platform.

1.1 What’s the Windows Azure platform?
As you might have already gathered, the Windows Azure platform encompasses Micro-
soft’s complete cloud offering. Every service that Microsoft considers to be part of the
cloud will be included under this banner. If the whole cloud thing passed you by,
there isn’t really anything magical about it. The cloud refers to a bunch of servers that
host and run your applications, or to an offering of services that are consumed (think
web service).

 The main difference between a cloud offering and a noncloud offering is that the
infrastructure is abstracted away—in the cloud, you don’t care about the physical
hardware that hosts your service. Another difference is that most public cloud solu-
tions are offered as a metered service, meaning you pay for the resources that you use
(compute time, disk space, bandwidth, and so on) as and when you use them.

 Based on the Azure release announced in November 2009 at the Professional
Developers Conference (PDC) held in Los Angeles, the Windows Azure platform splits
into the three parts shown in figure 1.1: Windows Azure, SQL Azure, and the Windows
Azure platform AppFabric. You can expect the parts included in the platform to

Other clouds and services

Windows Azure SQL Azure Windows Azure Platform
AppFabric

Visual Studio

On-premises applications

The operating system
for your code

A relational data engine
for the cloud

A way to connect
services together

Figure 1.1 The parts that make up the Windows Azure platform include the Windows Azure operating
system, SQL Azure, and AppFabric.

5What’s the Windows Azure platform?
increase over time; in fact, we wouldn’t be surprised to see Microsoft Flight Simulator
in the cloud.

 As cool as AppFabric and SQL Azure are, for now we’re going to stay focused on
the Windows Azure part of the Windows Azure platform and ignore all the other plat-
form-specific stuff until the end of the chapter. Talking about Windows Azure immedi-
ately gets a little confusing. Unfortunately, when most folks refer to Windows Azure,
it’s not clear whether they’re referring to the Windows Azure platform, the complete
cloud offering, or to Windows Azure, which is a part of the platform.

 It’s kind of like the ESPN naming convention. The ESPN Network has multiple chan-
nels (ESPN, ESPN2, ESPN News, and so on), yet we tend to refer to these channels col-
lectively as ESPN rather than as the ESPN Network. To confuse matters further, we also
refer to the individual ESPN channel as ESPN, also. If you ask someone what game is on
ESPN tonight, it’s not clear if you mean all the channels on ESPN (including ESPN News
and ESPN2) or if you mean just the channel named ESPN (not including ESPN2 and the
others).To keep things consistent, whenever we talk about the platform as a whole,
we’ll refer to the Windows Azure platform or the platform; but if we’re talking about the
core Windows Azure product, then we’ll use the term Windows Azure, or just Azure.

 So, what exactly is Windows Azure? Microsoft calls Azure its core operating sys-
tem for the cloud. OK, so now you know what Windows Azure is, and we can skip on,
right? Not so fast! Let’s break it down, strip away all the hype, and find out what
Azure is all about.

1.1.1 Windows is in the title, so it must be an operating system

Windows Azure is an operating system that provides the ability to run applications in a
highly scalable manner on Microsoft servers, in Microsoft’s data centers, in a manage-
able way. You can host either your web applications, such as a website that sells Hawai-
ian shirts, or backend processing services, such as an MP3-to-WMA file converter, in
Microsoft’s data centers.

 If you need more computing power (more instances of your website or more
instances of your backend service) to run your application, you can allocate more
resources to the application, which are then spread across many servers. By increasing
the number of resources to your application, you’ll ultimately be able to process more
data or handle more incoming traffic.

 Hmmm…how exactly is that an operating system? To answer that question, we
have to define what it means to be a cloud operating system.

 When Microsoft refers to Windows Azure as an operating system for the cloud, it
doesn’t literally mean an operating system as you might know it (Windows 7, Windows
Vista, Leopard, Snow Leopard, and so on). What Microsoft means is that Windows
Azure performs jobs that are similar to those that a traditional operating system might
perform. What does an operating system do? Well, it has four tasks in life:

� Host and run applications
� Remove the complexities of hardware from applications

6 CHAPTER 1 Getting to know Windows Azure
Figure 1.2 A typical
representation of an operating
system interacting with
applications and resources.
Notice that applications don’t
directly interact with CPU,
memory, or I/O devices.

� Provide an interface between users and applications
� Provide a mechanism that manages what’s running where and enforces permis-

sions in the system

Figure 1.2 shows how a traditional operating system achieves these tasks in a typical PC
environment.

 The applications shown in figure 1.2 are running within an operating system. The
applications don’t have direct access to the hardware; all interactions must come
through the kernel, the low-level operating system component that performs all the
tasks we’re discussing: processing, memory management, and device management.
We’ll look at how some components of Windows Azure fill the role of the kernel in
the cloud later in this chapter.

 The analogy of Windows Azure being an operating system looks like it could work
out after all. Over the next few sections, we’ll use this analogy to see how Windows
Azure fares as an operating system, which will give you a good overview of how Win-
dows Azure works and what services it provides.

1.1.2 Hosting and running applications the Azure way

Hosting and running applications might be the most important task of an operating
system. Without applications, we’re just moving a mouse around with no purpose.
Let’s look at the types of applications that can be run in both traditional operating sys-
tems and in Windows Azure.

TYPES OF APPLICATIONS: WHAT’S IN A NAME?

In a traditional operating system, such as Windows 7, we can consider most of the fol-
lowing to be applications:

� Microsoft Word (yep, it’s an app)
� Internet Explorer or Firefox (still an app)
� Killer Mutant Donkey Zombie Blaster game (even that’s an app)

Host and run applications

Provide common user interface

Hardware abstraction

CPU

Memory

I/O Devices

My funky app

Word

IE

K
e
r
n
e
l

7What’s the Windows Azure platform?
Remember those applications running in the context of a typical PC operating system
in figure 1.1? Instead of hosting client applications (games, Word, Excel, and so on),
the types of applications that you host in Windows Azure are server applications, such
as web applications (for example, a Hawaiian Shirt Shop website) or background com-
putational applications (for example, an MP3 file converter).

 Figure 1.3 shows these
server applications running
in a traditional operating sys-
tem.

 Turns out (see figures 1.2
and 1.3) that there’s no real
difference between Micro-
soft Excel and a Hawaiian
Shirt Shop website. As far as a
traditional operating system
is concerned, they’re both
applications.

RUNNING APPLICATIONS ACROSS THOUSANDS OF SERVERS

The traditional operating system is responsible for allocating CPU time and memory
space that allows your application to run (as seen in both figures 1.1 and 1.2). Not
only is the operating system responsible for allocating these resources, but it’s also
responsible for managing these resources. For example, if an application fails, then
it’s the operating system’s job to clean up the application’s resource usage and restart
the application, if necessary. This level of abstraction is perfect for an operating sys-
tem that manages a single server, but it isn’t scalable when it comes to a cloud operat-
ing system. With Windows Azure, your application doesn’t necessarily run on a single
server; it can potentially run in parallel on thousands of servers.

 A cloud operating system can’t be responsible for allocating CPU time and memory
on thousands of physically separate servers. This responsibility has to be abstracted
away from the OS. In Windows Azure, that responsibility is given to virtual machines
(VMs). Figure 1.4 shows how your applications might be distributed among the VMs in
a Windows Azure data center.

Figure 1.4 Applications split across many VMs in a Windows Azure data center

MP3 Converter

Hawaiian Shirt Shop
website

K
e
r
n
e
l

CPU

Memory

I/O Devices

Figure 1.3 Windows Azure–type applications running in a
traditional OS. Azure applications function in an OS the same
way that traditional applications do.

Virtual machine 1

Virtual machine 2

Virtual machine 3

Virtual machine 4

Virtual machine 6

Virtual machine 7

Virtual machine 8

Virtual machine 5(Hawaiian Shirt Shop)

(MP3 converter)

(Some other customer’s website)

(Hadron collider data processor)

(Azure in Action website)

Server 50 Server 4000

8 CHAPTER 1 Getting to know Windows Azure
Your cloud operating system is no longer responsible for assigning your applications’
resources by CPU and memory, but is instead responsible for allocating resources using
VMs. Windows Azure uses VMs to achieve separation of services across physical servers.
Each physical server is divided into multiple VMs. An application from another cus-
tomer on the same physical hardware as yours won’t interfere with your application.

 In figure 1.4, the Hawaiian Shirt Shop website is allocated across two VMs (VM1
and VM5), which are hosted on two different physical servers (server 50 and server
4000), whereas the Azure in Action website is allocated only a single VM (VM8) on server
4000 (shirt shops make more money, so they get more resources).

 Let’s drill down and take a closer look at what constitutes a VM.

ANATOMY OF A VIRTUAL MACHINE

Figure 1.5 shows what the VM
hosting a web application looks
like.

 The physical server is split up
into one or more VMs. Every
instance of your service (web role
or worker role) is installed onto
its own VM, which is a base instal-
lation of Windows Server 2008
(with some extra Azure bits).
The VM hosts the web applica-
tion within Internet Information
Services (IIS) 7.0.

 Although your application runs on a VM, the VM is abstracted away from you, and
you only have a view of the role instance, never of the VM. A single instance of your web
application is assigned to a single VM, and no other applications will be assigned to that
VM. In this way, every instance of your web application is isolated from other applica-
tions running on the same physical server. The VM image also runs an agent process.
We’ll explain what this agent does in chapter 3 when we discuss the Red Dog Agent.

To be honest, we’re now itching for some code. Let’s look at how you can build a sim-
ple ASP.NET website that you can run in one of those Windows Azure VMs. Don’t
worry; we’ll continue dissecting Windows Azure after you get your hands dirty with a
little code.

Web role and worker role

A role is another name for your application. The role refers to the base VM image that
hosts your application. A web role is a VM that hosts your application within IIS. A worker
role is the same as a web role, but without IIS. It’s intended for typical backend pro-
cessing workloads.

Web role

IIS

Hawaiian Shirt Shop
website

Agent

Virtual machine

Windows Server 2008

Hosted application

Management agent

Figure 1.5 A logical representation of the VM that hosts
your web application

9Building your first Windows Azure web application
1.2 Building your first Windows Azure web application
Although you’re going to build an ASP.NET website in this example, the good news is
that almost any website that can currently be hosted in IIS on Windows Server 2008
can be hosted in Windows Azure.

 The following are examples of the types of web applications Azure supports out of
the box:

� ASP.NET 3.5 web applications
� ASP.NET MVC 1.0, 2.0 web applications
� Web services (WCF, ASMX)
� Any FastCGI-based website such as PHP or Python
� Java and Ruby applications

Although Windows Azure supports the ability to host different types of websites, for
now you’ll create a simple Hello World web application using ASP.NET 3.5 SP1. In
chapters 7 and 15, we’ll look at how you can create PHP websites, WCF Web Services,
and ASP.NET MVC websites.

 To get started developing an ASP.NET 3.5 SP1 website, you’ll need to download the
Windows Azure software development kit (SDK).

1.2.1 Setting up your environment

The SDK contains a whole bunch of things that’ll make your life easier when develop-
ing for Windows Azure, including the following:

� Windows Azure development fabric (a simulation of the live fabric)
� Visual Studio templates for creating web applications
� Windows Azure storage environment
� Deployment tools
� A glimpse of a bright new world

In chapter 2, we’ll take a deeper look at some of the items in the SDK. For now, you’ll
just install it. If you’re an experienced ASP.NET developer, you should be able to install
the SDK by clicking the Next button a few times. You can grab the SDK from
www.Azure.com.

 Before installing the SDK, check your version of Windows and Visual Studio. A
local instance of some flavor of SQL Server (either Express, which is installed with
Visual Studio, or full-blown SQL Server) is required to use the SDK. We’ll explain this
in more depth in chapter 9.

SUPPORTED OPERATING SYSTEMS

Before you attempt to install the SDK, make sure that you have a suitable version of
Windows. Supported versions of Windows currently include the following:

� Windows 7 (which you should be running because it’s lovely)
� Windows Vista
� Windows Server 2008 (and beyond)

10 CHAPTER 1 Getting to know Windows Azure
NOTE Windows XP isn’t supported by Windows Azure. Before you jump up
and down about Windows XP, there isn’t some conspiracy against it. XP isn’t
supported because Windows Azure web roles are heavily built on IIS 7.0. Win-
dows XP and Windows 2003 use earlier versions of IIS that won’t work with
Windows Azure.

SUPPORTED VERSIONS OF VISUAL STUDIO

To develop Windows Azure applications in Visual Studio, you’ll need either Visual Stu-
dio 2008 or Visual Studio 2010. If you’re still running Visual Studio 2005, you now
have the excuse you need to upgrade. If for some reason you can’t get Visual Studio or
your company won’t upgrade you, then you can use the Web Express versions of either
Visual Studio 2008 or 2010 for free, or you can use Visual Studio 2008. We’ll be using
Visual Studio 2010 throughout this book. The windows and dialog boxes shown in the
figures might differ slightly from those in Visual Studio 2008 or the Express Edition,
but, all in all, it works in the same way.

STARTING VISUAL STUDIO

To launch your Windows Azure application in the development fabric from Visual Stu-
dio, you need Administrator privileges. Get into the habit (for Azure development) of
right-clicking your Visual Studio icon and selecting Run as Administrator.

 Now we’ll help you create your first Azure web application.

1.2.2 Creating a new project

Your first step is to create a new project. Open Visual Studio and select File > New >
Project. Select the Cloud Service project type, which gives you the option to select the
Cloud Service template, as shown in figure 1.6.

Figure 1.6 The Cloud Service template in the New Project dialog box of Visual Studio 2010

11Building your first Windows Azure web application
After you select the Cloud Service template, enter a name for your project and solu-
tion, and then click OK. The dialog box shown in figure 1.7 opens, in which you select
the type of Windows Azure project that you want to create.

 You can create the following types of roles:

� ASP.NET web roles
� ASP.NET MVC 2 web roles
� WCF service web roles
� Worker roles
� CGI-based web roles

You can create your projects in either Visual Basic or C#. In this book, we use C# rather
than Visual Basic. This is no disrespect to Visual Basic; we’ve found over time that
although C# developers typically aren’t comfortable with Visual Basic, Visual Basic
developers are comfortable with both languages (you have to be though, because
most samples are in C#).

 Select the ASP.NET Web Role project, and then click the right arrow button to add
the project to the Cloud Service Solution panel, as shown in figure 1.8.

Figure 1.7 New Cloud Service
Project dialog box. From here,
you can add several Azure
projects to your solution.

Figure 1.8 Selecting a web
role project from the New Cloud
Service Project dialog box.
Click the default name
WebRole1 to change it to
something more to your liking.

12 CHAPTER 1 Getting to know Windows Azure
Now that you’ve selected your web project,
click OK and wait for Visual Studio to generate
your solution. After Visual Studio has taken
some time to set up your solution and project,
it’ll have created a new solution for you with
two new projects, as shown in figure 1.9.
 The first project (CloudService1) contains
configuration that’s specific to your Windows
Azure web role. For now, we won’t look at the
contents of this project and instead save that for
chapter 2. Next, you’ll create a simple web page.

Figure 1.9 Solution Explorer for your newly created web
role project. The top project (CloudService1) defines your
application to Azure. The bottom one (WebRole1) is a
regular ASP.NET project with a starter template.

1.2.3 Modifying the web page

The second project (WebRole1) in figure 1.9 is a regular old ASP.NET web application.
You can modify the default.aspx file as you would normally. In this case, modify the
file to display Hello World, as shown in the following listing.

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Default.aspx.cs" Inherits="WebRole1._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Hello World</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 Hello World
 </div>
 </form>
</body>
</html>

Now that you’ve created your web page, you can run it in your development fabric.

1.2.4 Running the web page

Before you run your new web role, you must ensure that the cloud service, rather than
the ASP.NET project, is your startup project. By default, Visual Studio does this for you

Listing 1.1 Modifying the default.aspx file to display Hello World

13Putting all the Azure pieces together
when you create your new project. If the ASP.NET project is the startup project, Visual
Studio will run it with the built-in development web server and not the Azure SDK.

 Now for the exciting part: you’re about to run
your first web application in the Windows Azure
development fabric. Press F5 as you would for any
other Visual Studio application. Visual Studio fires
up the development fabric and launches your web
page in your browser just like any other web page.
Unlike regular ASP.NET web applications, the devel-
opment fabric hosts your web page rather than the
Visual Studio Web Development Server (Cassini).
Figure 1.10 shows your web page running in the
development fabric.

 Congratulations! You’ve developed your first
cloud application. In chapter 2, we’ll look in more
detail at the development SDK, the development fabric, and how to deploy your ser-
vice to the live production servers.

 Let’s return now to our big-picture discussion of Azure.

1.3 Putting all the Azure pieces together
Even Hello World web applications
often require multiple instances as
the result of the levels of traffic they
receive. To understand all that’s
involved in multiple instances, you
first need to understand the Win-
dows Azure logical infrastructure
and how it makes it so easy to
deploy and run applications in the
cloud. As you can see in figure 1.11,
the web role is just one piece of the
overall infrastructure.

 Over the next couple of sec-
tions, we’ll look at how the other
components—worker roles, the fabric and the Fabric Controller, and the storage ser-
vices—fit together. First, let’s take a closer look at the load balancer (the component at
the bottom of figure 1.11).

1.3.1 How the load balancer works

Note in figure 1.11 that neither your web roles (web applications) nor your worker
roles (background services) have direct incoming traffic from the internet. For both

Figure 1.10 ASP.NET 3.5 Hello
World running in the development
fabric

The fabric

Storage services

Web
role

Fabric
controller

Worker
role

Load balancer

Figure 1.11 The Windows Azure compute infrastructure
involves several components. They all work together to
run your application.

14 CHAPTER 1 Getting to know Windows Azure
worker and web roles, all incoming traffic must be forwarded via one or more load
balancers. The load balancer provides four important functions, as listed in table 1.1.

Not only can a role receive incoming traffic, but roles can also initiate communication
with services hosted outside the Windows Azure data centers, with roles inside the
data center, and with storage services.

 Now that you understand the load balancer’s job of distributing requests across
multiple instances of web roles, we’ll take a brief look at Azure’s other type of sup-
ported role, the worker role.

1.3.2 Creating worker roles

Worker roles are a lot like web roles and will be covered in depth in chapter 15. The
biggest difference is that they lack IIS, which means they can’t host a web application,
at least not in the traditional sense. Worker roles are best suited for hosting backend
processing and a wide variety of web services. These types of servers are often referred
to as application servers in many IT departments.

 At this point, we’ve explored a few tasks an operating system performs (hosting
and running applications). What we haven’t explained is how the kernel fits into this
analogy of Azure as a cloud operating system. You need something that will manage
your applications and all your VMs running in the Windows Azure data center. It’s one
thing to host an application; it’s another to manage what’s running and enforce per-
missions and resource allocation. In a normal operating system, the kernel performs
these tasks. In Windows Azure, the kernel is the Fabric Controller (it sits right in the
center of figure 1.11).

1.3.3 How the fabric and the Fabric Controller work

Azure contains a massive number of servers, and there isn’t any way they can possibly
be managed on an individual basis. This is where the Azure operating system concept
comes into play. By abstracting away all of those individual servers into a swarm or
cloud, you only have to manage the cloud as a whole. This swarm of servers is called
the fabric, and your applications run in the fabric when you deploy them to the cloud.

 The fabric is managed by a software overlord known as the Fabric Controller. The Fab-
ric Controller plays the role of the kernel and is aware of every hardware and software

Table 1.1 Primary load balancer functions

Function Purpose

Minimize attack surface area Improves security

Load distribution Enables incoming requests to be forwarded to multiple instances

Fault tolerance Routes traffic to another instance during a fault

Maintenance Routes traffic to another instance during an upgrade

15Storing data in the cloud with Azure
asset in the fabric. It’s responsible for installing your web and worker roles onto the
physical or virtual servers living in the fabric (this process is similar to how the kernel
assigns memory or CPU to an application in a traditional operating system). The Fabric
Controller is responsible for maintaining its inventory by monitoring the health of all
its assets. If any of the assets are unhealthy, it’s responsible for taking steps to resolve
the fault, which might include the following:

� Restarting your role
� Restarting a server
� Reprogramming a load balancer to remove the server from the active pool
� Managing upgrades
� Moving instances of your role in fault situations

Windows Azure follows a cloud computing paradigm known as the fabric, which is
another way of describing the data center. Like in the movie The Matrix, the fabric is
everywhere. Every single piece of hardware (server, router, switch, network cable, and
so on) and every VM is connected together to form the fabric. Each resource in the
fabric is designed and monitored for fault tolerance. The fabric forms an abstract rep-
resentation of the physical data center, allowing your applications to run in the fabric
without knowledge of the underlying infrastructure.

 Figure 1.11 shows how the Fabric Controller monitors and interacts with the serv-
ers. It’s the central traffic cop, managing the servers and the code that’s running on
those servers. The Fabric Controller performs the job of the kernel (except across
multiple servers at a server level rather than at CPU and memory level) in terms of
allocating resources and monitoring resources.

 One of the jobs that the Fabric Controller doesn’t do (but that a kernel does) is the
abstraction of the I/O devices. In Azure, this job is performed by storage services, which
we’ll discuss next (the storage services component sits near the top of figure 1.11).

1.4 Storing data in the cloud with Azure
Suppose you’re developing a new podcasting application for Windows 7. For this
application, you want to convert MP3 files to WMA. To convert an MP3 file, you first
need to read the file from a hard disk (and eventually write the result). Even though
there are thousands of different disk drives, you don’t need to concern yourself with
the implementation of these drives because the operating system provides you with an
abstracted view of the disk drive. To save the converted file to the disk, you can write
the file to the filesystem; the operating system manages how it’s written to the physical
device. The same piece of code that you would use to save your podcast will work,
regardless of the physical disk drive.

 In the same way that Windows 7 abstracts the complexities of the physical hard-
ware of a desktop PC away from your application, Windows Azure abstracts the physi-
cal cloud infrastructure away from your applications using configuration and
managed APIs.

16 CHAPTER 1 Getting to know Windows Azure
 Applications can’t subsist on code alone; they usually need to store and retrieve
data to provide any real value. In the next section, we’ll discuss how Azure provides
you with shared storage, and then we’ll take a quick tour of the BLOB storage service,
messaging, and the Table storage service. Each of these is covered in detail in their
related sections later in this book.

1.4.1 Understanding Azure’s shared storage mechanism

If we consider the MP3 example in the context of Windows Azure, rather than
abstracting your application away from a single disk, Windows Azure needs to abstract
your application away from the physical server (not just the disk). Your application
doesn’t have to be directly tied to the storage infrastructure of Azure. You’re
abstracted away from it so that changes in the infrastructure don’t impact your code
or application. Also, the data needs to be stored in shared space, which isn’t tied to a
physical server and can be accessed by multiple physical servers. Figure 1.12 shows this
logical abstraction.

 You can see how storage is logically represented in figure 1.12, but how does this
translate into the world of Windows Azure? Your services won’t always be continually
running on the same physical machine. Your roles (web or worker) could be shut
down and moved to another machine at any time to handle faults or upgrades. In the
case of web roles, the load balancer could be distributing requests to a pool of web
servers, meaning that an incoming request could be performed on any machine.

 To run services in such an environment, all instances of your roles (web and
worker) need access to a consistent, durable, and scalable storage service. Windows
Azure provides scalable storage service, which can be accessed both inside and outside
the Microsoft data centers. When you register for Windows Azure, you’ll be able to
create your own storage accounts with a set of endpoint URIs that you can use to access
access the storage services for your account.
The storage services are accessed via a set of
REST APIs that’s secured by an authentica-
tion token. We’ll take a more detailed look
at these APIs in parts 4 and 5 of this book.

 Windows Azure storage services are
hosted in the fabric in the same way as your
own roles are hosted. Windows Azure is a
scalable solution; you never need to worry
about running out of capacity.

1.4.2 Storing and accessing BLOB data

Windows Azure provides the ability to store
binary files (BLOBs) in a storage area
known as BLOB storage.

Disk storage

Service

Figure 1.12 Multiple instances of your
service (that don’t care what physical server
they live on) talking to an abstracted logical
filesystem, rather than to a physical drive

17Storing data in the cloud with Azure
 In your storage account, you create a set of containers (similar to folders) that you
can store your binary files in. In the initial version of the BLOB storage service, con-
tainers can either be restricted to private access (you must use an authentication key
to access the files held in this container) or to public access (anyone on the internet
can access the file, without using an authentication key).

 In figure 1.13, we return to the audio file
conversion (MP3 to WMA) scenario. In this
example, you’re converting a source recording
of your podcast (Podcast01.mp3) to Windows
Media Audio (Podcast01.wma). The source files
are held in BLOB storage in a private container
called Source Files, and the destination files are
held in BLOB storage in a public container
called Converted Files. Anyone in the world can
access the converted files because they’re held
in a public container, but only you can access
the files in the private container because it’s
secured by your authentication token. Both the
private and public containers are held in the storage account called MyStorage.

BLOBs can be split up into more manageable chunks known as blocks for more effi-
cient uploading of files. This is only the tip of the iceberg in terms of what you can do
with BLOB storage in Azure. In part 4, we’ll explore BLOB storage and usage in much
more detail.

BLOBs play the role of a filesystem in the cloud, but there are other important
aspects of the storage subsystem. One of those is the ability to store and forward mes-
sages to other services through a message queue.

1.4.3 Messaging via queues

Message queues are the primary mechanism for communicating with worker roles.
Typically, a web role or an external service places a message in the queue for process-
ing. Instances of the worker role poll the queue for any new messages and then pro-
cess the retrieved message. After a message is read from the queue, it’s not available to
any other instances of the worker role. Queues are considered part of the Azure stor-
age system because the messages are stored in a durable manner while they wait to be
picked up in the queue.

 In the audio file conversion example, after the source podcast BLOB
(Podcast01.mp3) is placed in the Source Files container, a web role or external service
places a message (containing the location of the BLOB) in the queue. A worker role
retrieves the message and performs the conversion. After the worker role converts the
file from MP3 to WMA, it places the converted file (Podcast01.wma) in the Converted
Files container.

MyStorage Account

Source files
container

Converted files
container

Podcast01.mp3 Podcast01.wma

Figure 1.13 Audio files held in BLOB
storage

18 CHAPTER 1 Getting to know Windows Azure
 If you’re experiencing information overload at this point, don’t worry! In part 6,
we’ll look at message queues in much greater detail and give you some concrete exam-
ples to chew on. Windows Azure also provides you with the ability to store data in a
highly scalable, simple Table storage service.

1.4.4 Storing data in tables

The Table storage service provides the ability to store serialized entities in a big table;
entities can then be partitioned across multiple servers.

 Using tables is a simple storage mechanism that’s particularly suitable for session
management or user authentication. Tables don’t provide a relational database in the
cloud, and if you need the power of a database (such as when using server-side joins),
then SQL Azure, discussed in chapter 13, is a more appropriate technology.

 In chapters 11 and 12, you’ll learn how to use Table storage and in what scenarios
it can be useful. Let’s turn now to the question of why you might want to run your
applications in the cloud. You’ll want to read the next section, if for no other reason
than to convince your boss to let you use it. But you should probably have a better
argument prepared than “it’s real cool, man” or “this book told me to.”

1.5 Why run in the cloud?
So far in this chapter, we’ve said, “Isn’t Azure shiny and cool?” We’ve also said, “Wow,
it’s so great I can take my existing IT app and put it in the cloud.” But what we haven’t
asked is, “Why would I want to stick it in the cloud? Why would I want to host my appli-
cations with Microsoft rather than host them myself? What advantages do I get using
this new platform?” The answers to these questions include the following:

� You can save lots of money.
� You won’t need to buy any infrastructure to run your application.
� You don’t need to manage the infrastructure to run your application.
� Your application runs on the same infrastructure that Microsoft uses to host its

services, not some box under a desk.
� You can scale out your application on demand to use whatever resources it

needs to meet its demands.
� You pay only for the resources that you use, when you use them.
� You’re provided with a framework that allows you to develop scalable software

that runs in the Windows Azure platform so your applications can run at inter-
net scale.

� You can focus on what you’re good at: developing software.
� You can watch football and drink milkshakes without being disturbed because

someone pulled out the server power cable so they could do the vacuuming.
� You can save lots of money.

19Why run in the cloud?
In case you think we’re repeating ourselves by saying “You can save lots of money” twice,
well, it’s the key point: you can save a lot. We’re often involved in large-scale systems for
which the infrastructure costs millions (and most of the time, the servers sit idle). That’s
not including the cost of running these systems. The equivalent systems in Azure are
about 10 percent of the cost.

 With that in mind, this section will show you a few of the ways the Windows Azure
platform can help you out and save lots of money.

1.5.1 Treating computing power as a utility service

In traditional on-premises or managed-hosting solutions, you either rent or own the
infrastructure that your service is hosted on. You’re paying for future capacity that
you’re currently not using. The Windows Azure platform, like other cloud platforms,
follows a model of utility computing.

 Utility computing treats computing power or storage in the same way you treat a
utility service (such as gas or electricity). Your usage of the Windows Azure platform is
metered, and you pay only for what you consume.

PAY AS YOU GROW

If you have to pay only for the resources you use, you can launch a scalable service
without making a huge investment up front in hardware. In the early days of a new
venture, a start-up company survives from investment funding and generates very little
income. The less money the company spends, the more chance it has of surviving
long enough to generate sufficient income to sustain itself. If the service is successful,
then the generated income will pay for the use of the resources.

 It’s not unusual for technology start-ups to purchase large and expensive hardware
solutions for new ventures to cope with predicted future demand. If the service is suc-
cessful, then it’ll require the extra capacity; in the meantime, the start-up is paying for
resources that it’s not using. Utility computing offers the best of both worlds, giving
you the ability to use extra capacity as the service grows without making up-front
investments in hardware, and to pay only for the resources that that you use.

SCALE ON DEMAND

Some situations involve large, unpredictable growth; you want to handle the load, but
not pay for the unused capacity. This situation might appear in the following scenarios:

� Viral marketing campaigns
� Referrals by a popular website
� Concert ticket sales

Let’s say you run a Hawaiian Shirt Shop, and you typically have a predictable pattern
of usage. If, for example, Ashton Kutcher (who has 2,000,000 Twitter followers) tweets
that he buys his shirts from your website, and he posts a link to your site to all his fol-
lowers, it’s likely that your website will experience a surge in traffic.

 Look at the graph in figure 1.14. It shows that your website normally receives around
1,000 hits per day. After Ashton Kutcher tweeted about your website, that increased to

20 CHAPTER 1 Getting to know Windows Azure
100,000 hits per day. The traf-
fic dropped off after about a
week, and then the website
had a new baseline of around
10,000 hits per day.
 With Windows Azure, you
can dynamically scale up to
handle the increased traffic
load for that week (and get all
the extra shirt sales); then, as
the traffic decreases, you can
scale back down again, paying
only for the resources you use.

Scaling up and down in Azure is quite simple, and we’ll discuss how to do it in detail
in chapter 6. You have several options at your disposal. It’s important to remember
that Azure doesn’t scale your service for you. Because it costs money, you have to tell
Azure how many servers you want. Azure gives you tools to do this. You can simply log
into the portal and make a small change to a configuration file, which is the easy, man-
ual way. You can also use the Service Management API (covered in chapter 18). This
API lets you change the resources you have allocated to your application in an auto-
mated way.

 It’s not only possible to scale up and down for predictable (or unpredictable)
bursts of growth; you can also dynamically scale your service based on normal, varied
usage patterns.

VARIED USAGE PATTERNS

Returning to the Hawaiian Shirt Shop example: after the Ashton Kutcher hype died
down a little, your website leveled off at around 10,000 hits per day. Figure 1.15 shows
how this traffic varies over the course of a day. Most of the time there’s little traffic on
the site, apart from during lunch and in the evening. Evidently, most people don’t buy
Hawaiian shirts when they’re at work.

 Because it takes only a few
minutes to provision a new
web server in Windows Azure,
you can dynamically scale
your website as your usage
patterns dictate. For the
Hawaiian Shirt Shop, you
might decide to run one
instance of the website during
the day, but in the evening to
run three instances to deal
with the increased traffic.

Figure 1.14 Traffic before, during, and after Ashton Kutcher
plugged your site

Figure 1.15 Distribution of website traffic over a single day

21Why run in the cloud?
 This sort of scenario is a perfect example of when cloud computing, specifically
using Windows Azure, is a perfect fit for your business. If you need to scale beyond a
single web server for certain periods of the day when traffic is high, Windows Azure is
a cost-effective choice because it allows you to scale back when traffic dies down.
Cloud computing solutions are the only offerings that give you this elastic scalability.
Other solutions typically require you to over-provision your hardware to cope with the
peak periods, but that hardware is underused at off-peak times.

So far, we’ve discussed the cost savings you can achieve by scaling your application up
and down. Let’s now look at how you can save money in maintenance costs.

1.5.2 Simplified data-center management

In this section, we’ll look at how the effort involved in operationally maintaining your
application is reduced in the Windows Azure environment.

BUILT-IN FAULT TOLERANCE

In Windows Azure, if the physical hardware that your service instance resides on fails,
that failed instance is redeployed to another machine. Hardware maintenance resides
solely in Microsoft’s domain, and you don’t have to worry about it.

 When you have more than two instances of your application running in Windows
Azure, each instance of your web role doesn’t live on the same physical server as
another instance. This arrangement ensures that if the hardware for one instance
dies, the other instance can continue to perform incoming requests. Not only does
the second instance live on a different physical server, but it also lives on a different
rack (in case the server rack fails). The server rack where the second instance resides
is connected to a different network and power grid from the first rack. This level of

Enough capacity

This example of utility computing can be extended further in regard to available ca-
pacity. It’s fair to say that most people don’t have any idea of the available spare
electricity capacity of the network supplying their home, but most of us are confident
that if we plug in an extra television, the required electricity will be supplied. The same
holds true in Windows Azure. We have no idea how much spare capacity the Microsoft
data centers have, but we do know that there’s enough. If you require an extra instance
of your website, web service, or backend service to be hosted, this will be provisioned
for you, within minutes. If the data that your service stores is much larger than you
originally anticipated due to the level of growth, more disk space will be allocated to
you. You never have to worry about running out of disk space or running out of com-
puting power. You only have to worry about running out of money to pay for the services.

Growth is difficult to model effectively, so knowing there’s always enough capacity to
grow allows you to concentrate on providing your service rather than worrying about
capacity planning, provisioning of new servers, and all their associated tasks.

22 CHAPTER 1 Getting to know Windows Azure
fault tolerance ensures that if there’s a failure on the physical server, the server rack,
the network, or in the electricity supply, your service continues to run and is able to
service requests.

 When you install your application, Windows Azure decides what servers to place
your instances on, with the intention of providing the maximum levels of fault toler-
ance. Because all data-center assets are tracked and mapped, the placement of appli-
cations on each physical server is determined by an algorithm designed to match the
fault-tolerance criteria. Even with only two instances of an application, these consider-
ations are pretty complex, but Windows Azure maximizes fault tolerance even when
there are hundreds of instances.

 Although fault tolerance is maintained within a physical data center, Azure doesn’t
currently run across the data centers, but runs only within a single data center. You
still need to perform offsite backups (if you need them). You can replicate your data
to a second data center and run your applications in more than one data center if geo-
redundancy is required.

 One of the key differences between Windows Azure–hosted applications and regu-
lar on-premises solutions or other cloud solutions is that Windows Azure abstracts
away everything about the infrastructure, including the underlying operating system,
leaving you to focus on your application. Let’s see how Azure’s ability to maintain the
servers your applications run on reduces cost.

SERVER SOFTWARE MAINTENANCE BEGONE!

Whether you’re running an entire data center or hosting a website on a dedicated
server at a hosting company, maintaining the operating system is usually your respon-
sibility. Maintenance tasks can include managing antivirus protection, installing Win-
dows updates, applying service packs, and providing security. If you’re running your
own dedicated machine on your own premises rather than it being hosted for you,
then you’re even responsible for performing backups.

 In Windows Azure, because the tasks associated with maintaining the server are the
responsibility of Microsoft, you can focus completely on your application. This situa-
tion greatly simplifies and reduces the cost of running a service.

 A final cost consideration is that if you have a service hosted in Windows Azure,
you don’t have to worry about the licensing costs for the underlying operating system.
You gain all the benefits of running under the latest version of Windows without pay-
ing for the costs of maintaining that software. The underlying software is abstracted
away from your service, but the base underlying operating system of your service is
Windows Server 2008. If you’re running multiple servers, the cost of licensing usually
runs into thousands of dollars.

 Although you don’t have to worry about hardware or software maintenance from
an operational or cost perspective, you do have to worry about it from a software
design perspective.

23Inside the Windows Azure platform
DESIGNING FOR DISTRIBUTION

Your services won’t always be running on the same machine, and they might be failed
over to another machine at any time. Failover might be caused by hardware failures,
software maintenance cycles, or load distribution. You must design your software so
that it can handle these failures. This might mean automatically retrying a failed oper-
ation when an exception occurs or reloading any local caches when a service restarts.
We’ll delve further into these issues in chapter 18.

 Let’s switch gears now and look at what the Windows Azure platform is all about.

1.6 Inside the Windows Azure platform
To reiterate, the major difference between Windows Azure and the Windows Azure
platform is the first one is the operating system, and the latter is the broader ecosys-
tem of related services and components. In this section, we’ll briefly overview the flag-
ship cloud services provided by the Windows Azure platform (beyond Windows Azure
itself): namely, a relational database using SQL Azure, and a set of enterprise services
that use the Windows Azure platform AppFabric.

 The Windows Azure platform provides many services. In this book, we don’t cover
every last aspect of every service that’s offered across the platform because each com-
ponent could probably justify its own dedicated book. We’ll give you an overview of
what’s offered, when it’s useful, and how you can use the more common scenarios.

 Let’s get started with the service that you’re most likely to use: SQL Azure.

1.6.1 SQL Server capability in the cloud

Although Windows Azure does offer support for storing data in tables, this is a basic
storage capability that’s suited only for certain core scenarios, which we discuss in
chapters 11 and 12.

 If you need to create more advanced databases, need to migrate existing SQL data-
bases to Azure, or can’t cope with learning another data storage technology, then SQL
Azure is the best solution for you. SQL Azure is a relational database (very similar to
SQL Server Express Edition) that’s hosted within the Windows Azure platform.

A history lesson

When SQL Azure was first announced and made available as a Community Technology
Preview (CTP), it was architected differently from the way it currently is. The initial pre-
views of what was known as SQL Server Data Services (SSDS) were of a nonrelational
model that was similar to Windows Azure storage services. The feedback given to the
product teams made it clear that customers wanted a relational database in the cloud,
and SSDS was later retired. Prior to being renamed as SQL Azure, SSDS was renamed
SQL Data Services, but there was never a public CTP under this name.

24 CHAPTER 1 Getting to know Windows Azure
WHAT IS SQL AZURE?

Version 1.0 of SQL Azure, which was released at PDC 2009, provides the core capabili-
ties of SQL Server in the cloud. The first release can be likened to running an instance
of SQL Server Express Edition on a shared host, with some changes to security so that
you can’t mess with other databases on the same server.

 Communication with SQL Azure is via the Tabular Data Stream (TDS) protocol,
which is the same protocol that’s used for the on-premises editions of SQL Server. You
can connect SQL Management Studio directly to your database hosted in the cloud, as
if it were hosted locally.

NOTE In the first release of SQL Azure, security is limited to SQL Server user
accounts. Windows Integrated Security isn’t yet supported. Expect some sort
of support beyond SQL Security at a later date.

Because you can con-
nect to SQL Azure with
a regular connection
string, any existing data
access layers continue
to work normally. Fig-
ure 1.16 shows commu-
nication between SQL
Azure and applications
that are hosted both
inside and outside Win-
dows Azure.

 If your application
works today using SQL
Server Express Edition and doesn’t use some of the more advanced features of SQL
Server (see chapter 13), then your application should work in the cloud with little or no
modification.

 Although on-premises applications can talk to SQL Azure, latency might make this
a less attractive option. The closer your application is to the database, the faster it’ll
go. You can reduce the impact of latency by making your application less chatty.

HOW SCALABLE IS SQL AZURE?

In version 1.0 of SQL Azure, there’s no built-in support for data partitioning (the abil-
ity to split your data across multiple servers). The initial release is targeted for data-
bases that are sized up to 10 GB; larger databases aren’t suitable for SQL Azure in this
initial release, but support for larger databases will be available in future service
updates. If you need to perform partitioning, you need to implement it in the applica-
tion layer.

 Let’s turn now to Azure platform’s enterprise services. Known as AppFabric, these
services include the Access Control Service (ACS) and the Service Bus.

TDS

TDS

TDS

TDS

TDS

On-premises
web server

On-premises
application

SQL
Management

Studio

Web
role

Worker
role

SQL
Azure

Figure 1.16 On-premises, Azure-hosted applications and SQL
Management Studio communicating with SQL Azure via TDS

25Inside the Windows Azure platform
1.6.2 Enterprise services in the cloud

The Windows Azure platform AppFabric (formerly .NET Services) is a set of services
that’s more oriented toward enterprise applications and is comprised of the following
components:

� AppFabric ACS

� AppFabric Service Bus

AppFabric is a large set of technologies that would require its own book to cover in
any depth. In this section, we’ll give you an overview of the technologies. In chapter
17, we’ll show you how to get started using them and discuss a couple of key scenarios
in which to use the technology.

ACCESS CONTROL SERVICE

User authentication security and management is a fairly standard requirement for any
service used in an enterprise organization. Enterprises require that their employees,
customers, and vendors be able to access all services in the organization with a single
login; typically, the authentication process occurs using the Windows login. After you’re
authenticated, you’re typically issued a token, which is automatically passed to other
services in the enterprise as you access them. The automatic passing and authentication
of this token means you don’t have to continually log in each time you access a service.

 Services in the enterprise don’t implement their own individual authentication
and user-management systems but hook directly into the organization’s identity-
management service (such as Active Directory). This single sign-on process provides
many benefits to the company (centralized and simplified user management and
security) and is a much more integrated and less frustrating user experience.

 Traditionally, identity management and access control have been restricted to the
enterprise space. With the advent of Web 2.0 social platforms, such as Live Services
and Facebook, this level of integration is now creeping into everyday websites. Web
users are now more concerned about data privacy and are reluctant to cheaply give
away personal information to third-party websites. They don’t want a long list of user
names and passwords for various sites and want a much richer social experience on

Velocity and Dublin: where are they now?

In addition to the Windows Azure platform AppFabric product, there’s also an on-prem-
ises product known as Windows Server AppFabric. This is a completely different prod-
uct set, which currently includes AppFabric Caching (formerly Velocity) and AppFabric
Service Workflow and Management (formerly Dublin).

Although these services aren’t currently part of the Windows Azure platform (PDC 2009),
you can expect them to appear at some point. Depending on when you’re reading this
book, they could be available right now. Alternatively, you could be reading this in the
far future (relative to PDC 2009) and there’s no need for this technology because we’re
all plugged in to the Matrix.

26 CHAPTER 1 Getting to know Windows Azure
the web. For example, it’s increasingly common for people to want to be able to tell
their friends on Facebook about their latest purchase. Between Facebook, Live Ser-
vices, OpenID (and its differing implementations), and all the various enterprise iden-
tity-management systems, access control has now became a complex task.

 AppFabric ACS abstracts away the nuances of the various third-party providers by
using a simple rules-based authentication service that manages authentication across
multiple providers for users with multiple credentials. We’ll look more closely at ACS
in chapter 17 and show you how to use it in a couple of key scenarios.

APPFABRIC SERVICE BUS

The Service Bus is a cool piece of technology that allows you to message with applica-
tions that aren’t necessarily running in the Azure data centers. If you have a custom,
proprietary service that you need to continue to host, but you want to use Azure for all
other aspects of your service offering, then the Service Bus is a good way to integrate
with those services.

 The Service Bus is effectively an Enterprise Message Bus that’s hosted in the cloud.
We’ll explore in more detail what this means and look at a couple of key scenarios
where you could use this technology in chapter 17.

1.7 Summary
In one chapter, you’ve learned about cloud computing, Windows Azure, and the Win-
dows Azure platform. Although both Windows and Windows Azure are operating sys-
tems, providing all the needed functions, they differ greatly in terms of scale. Windows
is an operating system for a single machine, whereas Windows Azure is an operating
system for a whole fabric of machines, devices, networks, and other related items.

 You learned that you can easily scale applications that run in Windows Azure to
support the future needs of your application, but you pay only for your current needs.

 We also briefly discussed why you might want to use the cloud. The cloud can give
you new capabilities, such as dynamic scaling, disposable resources, and the freedom
from manning any of it. But the real reason anyone uses the cloud always boils down
to money. The rationale is simple: functionality you can’t afford to provide in a nor-
mal data center is affordable in the cloud.

 You developed your first Windows Azure web application and saw that developing
in Windows Azure builds on your existing skills. You can now easily write code that
runs locally or runs in the cloud—depending on your needs, not your skills or tools.

 Like a desktop operating system, the Windows Azure platform consists of a lot of
different parts. The platform includes SQL Azure, which provides a traditional rela-
tional database that gives you a familiar setting and makes it easier to migrate applica-
tions. Azure can also run your applications and manage storage.

 We looked at how the Windows Azure platform AppFabric fits into the equation.
AppFabric provides both a Service Bus you use to connect your applications together
and a simple, standards-based way to secure your services called Access Control Ser-
vice (ACS).

 In chapter 2, we’ll continue our discussion of Azure by showing you how to take your
first steps with a web role and how to work with code that goes beyond Hello World.

Your first steps
with a web role
With the first chapter out of the way, you should have gotten a feeling for the lay of
the land, installed the Windows Azure SDK, and run a Hello World application
locally. Let’s dive right in to building a website to run on Azure. In this chapter,
we’ll cover all the steps involved:

� Starting a new Visual Studio project
� Building the XHTML and code for the website
� Running and debugging the site locally
� Deploying the site to the Azure staging environment
� Moving the site to the Azure production environment

This chapter covers
� Building a basic website

� Signing up for Azure

� Deploying your first cloud application
27

28 CHAPTER 2 Your first steps with a web role
Don’t let these steps daunt you. If you’ve ever developed a website with ASP.NET,
you’re already ahead of the game. You’ll have to complete far fewer steps to deploy an
application with Azure than you would with a traditional server.

 In a large enterprise project one of us worked on, 15 percent of the work hours was
spent planning the development, quality assurance, and production environments.
Most of this time was used to define hardware requirements, acquire capital expendi-
ture approval, and deal with vendor management. We could’ve shipped much sooner
if we’d been able to focus on the application and not the underlying infrastructure
and platform. Many organizations take three to six months just to deploy a server! You
won’t require this much time to complete the entire process using Windows Azure.

 In this chapter, we’ll focus on the basic process of deploying a simple website using
the web role in Azure, which is highlighted in figure 2.1.

 Before we start discussing the web role in detail, let’s take a closer look at the
Azure SDK.

2.1 Getting around the Azure SDK
After you install the SDK, a folder structure is created on your computer that’s filled with
tools, goodies, and documentation. The default path is C:\Program Files\Windows

Windows Azure

Compute

Storage

Manage

Web role Worker role

BLOBs Queues Tables

Portal Logs Analytics Figure 2.1 The basic components of Windows
Azure. In this chapter, we’ll focus on how you
use the web role in Azure.

Figure 2.2 The
directories that
the Azure SDK
installs for you.
You should
examine these
because they
contain lots of
handy tools.

29Getting around the Azure SDK
Azure SDK\v1.1. (Pay attention to the path name. It’ll vary, depending on the version of
the SDK you’ve installed. In our case, we have version 1.1 installed.) The contents of this
directory are shown in figure 2.2.

 You should explore these folders briefly, to be familiar with what’s available. There
are several tools included in the SDK that are quite powerful. Some tools can help you
automate build environments and the management of your live Azure applications.

2.1.1 Exploring the SDK folders

Two of the more important SDK folders are bin and inc. The bin folder contains the
assemblies and tools that you need to work with Azure packages and to run the devel-
opment fabric. The inc folder holds a header file that you use if you’re working with
C++. Table 2.1 lists the tools included in the bin directory.

The SDK provides tools you can use when you aren’t using Visual Studio or when
you’re automating some of your processes. For example, if you’re using Eclipse to
write Java code for Windows Azure, you’ll need to run these programs yourself,
whereas Visual Studio will run them for you automatically.

2.1.2 Using the Cloud Service project templates

When you installed the SDK, a new project template group called Cloud Service was
created in Visual Studio. This group includes several templates for you to start work-
ing with. You can use them when you’re adding a new project to your solution. Never
fear; you can also add an existing project, which is handy when you’re migrating an
application to the cloud.

Table 2.1 The most important tools included in the SDK are found in the bin directory.

Visual Studio tool Purpose

CSmonitor This tool loads the local development fabric. You’ll see the icon
appear in your systray.

CSpack Use this tool to manually create deployment packages to upload
to the Azure portal when you’re ready to run your application in
the cloud.

CSrun This tool lets you deploy a package generated by CSpack to run
on the local development fabric.

DFUI This script starts the management UI for the local development
fabric.

DSinit Use this tool to run the initialization needed for the Develop-
ment storage service on a new SQL instance. If you’re using
SQL Server Express, the initialization is usually run once, on
first startup. You’ll need to run this yourself if you’re running a
local instance of SQL Server. This tool is located in the devstore
subdirectory, under the bin folder.

30 CHAPTER 2 Your first steps with a web role
Let’s look at the Cloud Service project options that are available to you. The New
Cloud Service Project window is shown in figure 2.3.

 The SDK provides the following Visual Basic templates that you can use in your
solutions:

� ASP.NET Web Role—This template creates an ASP.NET project, preconfigured
with an accompanying Azure project.

� ASP.NET MVC2 Web Role—This template creates a project similar to the ASP.NET
Web Role template, but is prewired to support the MVC2 framework.

� WCF Service Web Role—Planning on hosting a Windows Communication Founda-
tion (WCF) service instead of a normal web application? Then this is the project
for you. You set this up like a normal WCF project, using sample files for your
first service.

� Worker Role—This template creates a class library project, preconfigured with a
related Azure project. You should use this project if you’re building a back-
ground processing service.

� CGI Web Role—This project template creates the required files needed to host a
FastCGI project, which we’ll cover in chapter 6.

� Blank Cloud Service—This isn’t really a template, but if you click OK without add-
ing any projects, you’ll have a solution that contains an Azure project without
any supporting application projects.

NOTE We’re using Visual Studio 2010 in this book. You can use Visual Studio
2008. If you do, your experience will be similar to that depicted in this book,
but some screenshots will look different, and the installation process is
slightly different.

Figure 2.3 You have
several options when it
comes to adding an Azure
project to your solution.
These project templates
are provided with the SDK.

31Getting around the Azure SDK
2.1.3 Running the cloud locally

We talked in chapter 1 about the internal web server that Visual Studio has included
for the past few versions, called Cassini. This server makes it easy for a web developer
to develop locally, without having to install full-blown server software on their desktop.
Cassini was also designed to be lightweight and to respond only to local web requests,
which enhances performance and security. The Azure SDK includes similar services
that help the developer develop cloud websites and services locally.

 The SDK installs the develop-
ment fabric service and the
development storage service.
Both these services are started
automatically by Visual Studio
when you run an Azure project.
(If you aren’t using Visual Stu-
dio, or if the services don’t start
for you, you can start them from
the Windows Start menu or from the Azure command prompt using CSMonitor.exe.)
Although these services are separate processes, they appear as a single icon in the
notification area of your task bar, shown in figure 2.4. Each service has several differ-
ent processes related to it, which handle load balancing, node management, and a few
other tasks. These processes allow you to run and debug your cloud services locally,
before you deploy them to the cloud. They effectively work together, with a local
instance of SQL Server Express, to simulate the real Azure storage and runtime envi-
ronment. Because the environment is simulated, there are some limitations, which
we’ll discuss later in this chapter.

 When these services start, both services continue to run until you stop them with
the taskbar UI. We recommend that you leave them running while you’re developing,
and then shut them down when you’re done for the day.

 You can use an existing local instance of SQL Server instead of SQL Server Express
to support the storage service. The SDK includes a tool called DSinit that you can use
to initialize the storage databases. To configure the storage service to use your local
SQL instance, use the /sqlInstance parameter with the name of the SQL instance you
want to initialize. You can use a single period to represent the default instance for the
server running, so you don’t have to look up the name you gave the instance when you
installed SQL Server: DSinit.exe /sqlInstance.

 The SDK also includes a variety of samples that you can use to get a good idea of
how to approach supported scenarios. One of the best ways to learn Azure is to walk
through the code in the samples and understand how they work. The samples are pro-
vided in a zip file in the root of the SDK folder. Extract them to a folder to work with
the code.

Figure 2.4 You can find the local cloud service icons in
your notification area. The blue Windows flag tells you that
the development fabric and the development storage
services are running. Right-click the icon to show the UI you
use to manage the services.

32 CHAPTER 2 Your first steps with a web role
2.1.4 How the local and cloud environments differ

Although the SDK tools try to provide a complete simulation of the production cloud
environment, there are some limitations developers should be aware of. Most of these
limitations exist because the local environment is running on one machine, with lim-
ited resources. Others exist because the local storage service is based on a local SQL
Server Express instance. We think that over time, the gaps between the local environ-
ment and the cloud environment will shrink. Table 2.2 summarizes the differences
between the environments. The SDK documentation has a complete and up-to-date
list of all the differences.

One way to minimize the impact of the local storage limitations is to shift to a blended
model during your development. Early on in your project, you can configure your
application to use local storage. As you start to bump up against the limits, adjust the
configuration of the application to use the cloud-based storage. In this blended mode,
you continue to run your application locally. Running your code locally with your data
in the cloud during development will incur some slight charges for the bandwidth
and storage of your data. We believe the cost is worth it because you’ll be developing
against the real storage infrastructure and not the local simulation provided by the
SDK. Eventually, you’ll deploy your application to the cloud staging environment, with
the application configured to use the cloud storage.

 To get a feel for how the SDK and tools work, you’re now going to create a simple
website.

Table 2.2 Differences between the local and Azure cloud environments

Feature Local environment Cloud environment

Storage environment access Uses a special account key for
access.

Storage environment access is
different from your cloud key.

HTTPS support Doesn’t support the use of HTTPS. Cloud storage supports both
HTTP and HTTPS.

Storage performance Local storage is intended only for a
few local connections, nothing
more.

Expect the performance of the
cloud-based storage to be much
faster.

URI management Because the Azure Domain Name
System (DNS) is not part of the
local environment, storage URIs are
different in the local environment.

URIs are based on the Azure
DNS system.

Storage management The local storage subsystem
doesn’t provide extended error
information.

Cloud storage provides
extended error information.

BLOB storage BLOBs in the local store are limited
to 2 GB in size.

BLOBs in the cloud can be as
big as 1 TB.

33Taking Hello World to the next level
2.2 Taking Hello World to the next level
You’re going to build a second web application now, and it’ll be a bit more compli-
cated than the Hello World sample in chapter 1. This new website isn’t going to have a
lot of functionality, just a bit of XHTML and a cascading style sheet (CSS), with some
simple code. You aren’t going to be using any databases or advanced topics. Your goal
is to make sure that the SDK and tools are installed correctly, and to learn the general
workflow of working with a web application in Azure.

 The one-page website that you’re going to create lists the different shirts available
at Chris’s Hawaiian Shirt Shop. In addition to walking through the basic workflow,
we’ll also show you that in many scenarios, running a website in Azure is like running
a website on your own server, and that it’s as easy, if not easier, to deploy it. We’re
going to walk you through only the pertinent code; you can review the complete code
listing in the sample code provided with this book.

2.2.1 Creating the project

Your first step is to create the project. Open Visual Studio and select File > New > Proj-
ect. Visual Studio displays a list of available templates; select the Cloud Service tem-
plate group, and then select Windows Azure Cloud Service in the menu. Give the
project a name, such as HawaiianShirtShop, and click OK. A pop-up menu opens in
which you pick the project types you want to add to your Azure solution. Because
you’re building a simple website, without any backend processing, choose the ASP.NET
Web Role template. After you add the web role to the project, you can rename it; then
click OK. You’ll see the New Cloud Service Project window with one solution, as shown
in figure 2.5.

Figure 2.5 Creating
a new Azure
Application project is
easy. Just add
the different roles
you’ll need in your
solution.

34 CHAPTER 2 Your first steps with a web role
Visual Studio starts to build a solution file for you
that contains a few projects. The first project is
given the name that you entered on the New Proj-
ect window. This new project will be the Azure
project, and it doesn’t contain a lot. It merely con-
tains the model and configuration Azure needs to
run your website. You can think of this informa-
tion as the metadata for your whole Azure applica-
tion. The project also contains links to other
projects in your solution, and the role type those
projects play in your application. These links are
stored in the Roles folder. The solution and proj-
ect structure is shown in figure 2.6.

 Visual Studio also created an ASP.NET web
application project for you, and linked it to the
Azure project as a web role. Remember that you
can name the subprojects when you select them
from the list of roles (figure 2.5) by clicking the
pencil icon. This icon shows up when you hover over the projects in the Cloud Service
Solution list.

 This ASP.NET project is typical in almost every way. Because Visual Studio knew the
project was going to be part of an Azure application, it created assembly references to
three Azure-related assemblies for you. The three assemblies are part of the Micro-
soft.WindowsAzure namespace. The Diagnostics assembly covers logging needs, the
ServiceRuntime assembly provides methods for interacting with the Azure fabric, and
the StorageClient assembly makes it easy to work with the Azure storage services.
Visual Studio also added a file called webrole.cs or webrole.vb. This file is similar to
the global.asax file for your website, but is for all of your instances. We’ll cover this file
in a later chapter.

 You could press F5 right now and the project would compile and run locally. Visual
Studio would start the local development Fabric and storage services, and then pack-
age and deploy your application. Of course, without any code or markup, you
wouldn’t see too much, except for an empty web browser. To enhance your app, you
need to give it some content.

2.2.2 Laying down some markup with XHTML and a CSS

Now that you have the empty shell in place, you need to put in the content for the
website. This new page is going to announce the name of your business and list a few
of the shirts you have for sale. When you’ve completed this task, you’ll have a simple
web page that looks like figure 2.7.

 Open the default.aspx file and paste in the markup shown in listing 2.1. With
Azure, you don’t usually need any special tags or changes to your website to do what

Figure 2.6 The projects that Visual
Studio creates for you. The bolded
project is the Azure project, which
holds the cloud configuration data for
your application. Also shown is the
HSS Web App project, which is linked
to the Azure project as a web role.

35Taking Hello World to the next level
you’ve always done. This is one thing that makes it easy for a web developer to learn
how to use Azure and quickly move to the cloud.

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="HSS_Web_App._Default" %>

<!doctype html public "-//w3c//dtd xhtml 1.0 transitional//en"
➥ "http://www.w3.org/tr/xhtml1/dtd/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>Chris's Hawaiian Shirt Shop</title>
 <link rel="stylesheet" href="Main.css" type="text/css" />
</head>
<body>
 <form id="form1" runat="server">
 <div id="header">
 <h1>
 Chris's Hawaiian Shirt Shop</h1>
 </div>
 <div id="mainContent">
 <h3>
 Many Styles Available!</h3>
 <p>

Listing 2.1 The simple ASP.NET XHTML markup for your web page content

Figure 2.7 After you add some simple XML and a CSS, your web page will look like this.

36 CHAPTER 2 Your first steps with a web role
 We have many styles available, to suit any special need or
occasion. Please check out our amazing classic 50's styles. Call now to
place your order or to check on what we have in stock.</p>

 <asp:Repeater ID="rptProductList" runat="server">
 <ItemTemplate>
 <div class="item">
 <h3>
 <%# Eval("productName") %>
 </h3>
 <div>

 $<%# Eval("unitPrice")%>
 each.
 <p><%# Eval("description") %></p></div>
 </div>
 </ItemTemplate>
 </asp:Repeater>
 </div>
 </form>
</body>
</html>

The markup shown in listing 2.1 is going to produce a pretty boring and run-of-the-
mill ASP.NET web page. The asp:Repeater q is bound to a collection of shirt data so
that it renders a list of products available. The repeater renders your business data
with the eval statements w.

2.2.3 Binding your data in the code-behind

The next step in your simple sample is to get the product data from a stub that will
provide sample data, and then bind it to the repeater control in the markup. Let’s call
the stub ProductInfo. The complete code for the ProductInfo class can be found in
the sample code provided with this book. A lot of developers would call this class
ProductService, but we think the service word is overloaded as it is and makes things
confusing. (You should feel free to roll the way you want; it’s your code.) You’ll also
have a data transfer object (a simple class that has no methods, only properties),
called Product, to hold your product data. You’ll use a generic list collection to hold
the multiple product classes as you bind them to the repeater control. You can place
these classes in a new C# class file in your project:

public class Product
{
 public Product()
 {
 }

 public int sku { get; set; }
 public string productName { get; set; }
 public decimal unitPrice { get; set; }
 public string description { get; set; }
}

q
Lists
the shirts

Renders
only
shirt data

w

Accessors for
product
properties

q

37Taking Hello World to the next level
Because we’re trying to keep things simple, we’re suggesting you use simple property
accessors q around the business data. Next, you’ll add the Page_Load code that’ll gather
the product data and bind it to the fields on the form, as shown in the following code:

 ProductInfo productInfoSource = new ProductInfo();
IList<Product> allProducts = productInfoSource.GetAllProducts();

rptProductList.DataSource = allProducts;
rptProductList.DataBind();

When the page is loaded, it creates a ProductInfo object. The page uses that object to
get a collection of Product objects, which is then bound q to the ProductList
repeater on the web form.

 When you’ve entered the code correctly and run the application, Visual Studio
starts the local Azure services (you’ll see their icon in your task base like in figure 2.3),
and launches the website in your browser. When you’re running Azure applications
locally, you must run Visual Studio as an administrator. If you forget to do this, Visual
Studio will kindly remind you when you press F5.

 If you look closely at the code, your web project doesn’t have or do anything a nor-
mal website wouldn’t have or do. The only differences are the Azure project, which
tells either the local services or the Azure cloud how to run your application, and the
webrole.cs file, which acts as a global event handler for your web role instances.

 The Azure Fabric Controller knows how to deploy and manage your application,
based on the settings included in the Azure project in your solution. There are several
parts to this configuration that we need to cover now.

2.2.4 Just another place to run your code

We’re going to spend a lot of time in this book discussing the unique capabilities the
Azure platform has. You’ve probably heard a lot about cloud computing, and might
be a little confused or intimidated. Don’t worry! Until you fully grok the powers of the
cloud, the easiest way to wrap your head around it is to think of it as just another place
to run your code. If you boil it down to this simple concept, then its most powerful
aspect is the simplicity of the deployment and management of applications.

 Each cloud project defines a service model for the application. This model defines
how the app should be deployed and run in the cloud. With this model, there isn’t a
30-page deployment document with obscure and arcane instructions for deploying
and upgrading. You can simply deploy your application with a few clicks and a few
minutes of time. Azure knows what to do with your code because of the configuration
and service model in the Azure project in your solution.

2.2.5 Configuring the Azure service model

The most important aspects of the Azure project are the links, which tell Visual Stu-
dio which projects in the solution are parts of the application, and what role they play.
These links appear in the portal as elements that can be configured and scaled sepa-
rately. A class library in your solution should be referenced with a project assembly

q
Connects to data source
and calls DataBind()

38 CHAPTER 2 Your first steps with a web role
reference as usual, and not linked to from the Azure project file. Besides these links,
the Azure project also includes two configuration files:

� ServiceDefinition.csdef—This file defines which services are part of the applica-
tion, and whether the services have any endpoints or connections that need to
be provisioned. The information includes the public port that a website might
need in order to receive traffic from the internet. This file mainly concerns
itself with the configuration of the infrastructure.

� ServiceConfiguration.cscfg—This file determines the configuration of the services
and how they should be provisioned by Azure. The configuration includes how
many instances of each role should be deployed, and other operational charac-
teristics.

We’ll investigate each of these files in more depth in chapter 3.

2.2.6 Running the website in the local development fabric

When you run an Azure application locally, Visual Studio starts the development fab-
ric and storage services, and then launches the application. Part of this process
includes removing old temporary files and packaging the project to be deployed to
the local services.

 After the services are loaded, you can run their UIs to see what’s happening in the
local environment. Right-click the icon in the system tray and select Show Develop-
ment Fabric UI. Each time you run your application, a new deployment is created,
each with a successive number. Other deployments from your applications might show
up in the UI, in addition to the one you’re currently running.

 The UI lists the deployments in the left panel. Each deployment displays the
details of that service, as well as a list of the different roles and their instances that are

Figure 2.8 The UI of the
development fabric. This
UI shows that there is
one web role running; it
also shows the log
history for that instance.

39Deploying with the Azure portal
running. In figure 2.8, you can see one role, a web role called HSS Web App, which
was the ASP.NET project in your solution that was linked to from the Azure project.
That role has one instance running. In the UI the instances are numbered, starting
with 0, because we’re all geeks. In the right panel you see the log history for that
instance.

 With this UI you can pause or stop the different services, which is helpful during
debugging. You can also change the logging levels of each service, which better
refines what the log is capturing, and which is also helpful during debugging.

 Now that you know how to install and use the Azure SDK and how to run your
applications locally using the development fabric and storage services, we’re going to
show you how to deploy your little website to the cloud, and then become rich selling
Hawaiian shirts.

2.3 Deploying with the Azure portal
The Azure portal is one of the three major components you use to manage your Azure
applications. The other two components are your system logs (often referred to as diag-
nostics), and the analytical and
billing tools. These components
are highlighted in figure 2.9.

 Before you can log in to the
portal to manage your applica-
tions, you need to create an Azure
account.

2.3.1 Signing up for Azure

You need to sign up for an
account and provide a live ID and
billing details. You’ll need to visit
www.Azure.com to sign up. Go to the account section and click Get Your Account. You
should open two accounts and provide two live IDs: one for business purposes such as
billing and contract details, and another that’s limited to the technical aspects of the
system. Having two accounts cleanly separates the management of the business aspects
from the management of the technical aspects. The business account manager is pre-
vented from accidentally shutting down the applications or reconfiguring them. The
cloud doesn’t remove the risk of human mistakes; Azure just tries to automate these
mistakes so that they cause trouble faster and more efficiently.

 You’ll need to give your credit card information so that they know who to bill for
the time you use. Even if you have access to free time in the cloud through MSDN or
some other channel, you’ll still need to provide a credit card number in case you go
over your free allocation.

 Now that you have your account provisioned, you’re ready to create a project on
Azure to host your account. To do this, you use the Azure portal.

Windows Azure

Compute

Storage

Manage

Web role Worker role

BLOBs Queues Tables

Portal Logs Analytics

Figure 2.9 The management components of Azure
include the portal, system logs, and the analytical tools.

40 CHAPTER 2 Your first steps with a web role
2.3.2 The Azure portal

The Azure portal is your central management tool for all aspects of running your
application in the Azure environment. As shown in figure 2.10, across the top you’ll
be able to view the technical details (using the Summary tab) or the account details
(using the Account tab) of your services. When you click one of these tabs, any ser-
vices that you’ve created (websites, services, storage, and so on) are listed in the Win-
dows Azure section on the left.

 The following tabs are available on the portal:

� Summary—Lists your projects, and gives you access to managing them. From here
you can upload new versions, flip staging and production, and manage log files.

� Account—Helps you manage your affinity groups, certificates, and any other
broad configuration that affects all services under your account.

� Help and Resources—Brings together all the help options available to you, includ-
ing technical support and public forums.

Azure will show you the different types of services available to you on your Azure
account. You’ll see icons for Storage Account and Hosted Services. You might also see
icons for the other services that are part of the greater Azure Services platform, such
as the AppFabric and SQL Azure.

Figure 2.10 The Windows Azure portal. After you’ve created an application to run in the cloud,
choose the Hosted Services project type. This window also shows how many more storage
services you can create; the current user is allowed to create three more storage services.

41Deploying with the Azure portal
Now that you have your account provisioned, you need to create a project on Azure to
host your account.

2.3.3 Setting up your service online

Log in to your Azure portal with the live ID you created your Azure account with. On
the home page, click the New Service link at the top right of the window. The process
of creating a new service begins; you’ll push your code to this new service. The term ser-
vice is used as a general term on the Azure portal to represent some usage of the sys-
tem, which might be a storage account or one of several websites that you’ve deployed.

 Click the Hosted Services icon shown in figure 2.10 to start the new service wizard.
Oh, how we love wizards.

 The first step is to provide some basic properties for your project. You need to pro-
vide a project name and a description. These are for your own use, but by being careful
in how you name and describe your project, you can make it easier to manage your
projects over the long haul. After you provide the requested information, click Next to
proceed. You’re ready for the second step, which is to provide a name for the service
and information about affinity groups. You enter this information in the window
shown in figure 2.11.

 The most important part of this window is the service name. (Remember that
pretty much any code running in Azure is called a service, even if it’s a simple website
like our sample.) This service name will carry over into almost everything you do with
the service you’re deploying, so choose wisely. Selecting an embarrassing childhood
nickname is tempting (such as Doogie Howser or Brainy Smurf), but this should be a
name that supports the way you’re going to manage your Azure environment.

 The name you provide will be the first part of the URL for your service. For example,
if your service name is HawaiianShirtShop, the Azure DNS server would refer to this site
as HawaiianShirtShop.cloudapp.net. Because this isn’t the name you embroidered
on thousands of T-shirts (preferring instead the URL www.HawaiianShirtShop.com),
you can use your own DNS tricks to refer people to the correct URL. A simple CNAME
record in your DNS server can direct people to your service with any domain name you
want to use.

 The service name has to be unique across all of Azure. Click the Availability button
to find out if the name you want is available. We’re going to enter AzureInAction, and
see if it’s available. Because we’re doing this, that name won’t be available to you; go
ahead and check.

 The lower half of this window has to do with what Azure calls affinity groups. Affinity
groups are used to make it easy to deploy services that are related to each other to the
same regional data center for performance purposes, or to different data centers for
disaster recovery or geo-distribution purposes. As you create more services, instead of
having to remember which geographic area to set for your new service, you can select
a customer affinity group. Later, when you want to move your services, you just update
the affinity group as a whole.

42 CHAPTER 2 Your first steps with a web role
Click Create to finish the process. At this point, a project has been provisioned, and is
ready for you to deploy an application to. The portal displays the project page for the
project you just created.

 Each project contains two zones, staging and production. The typical process of
deploying your application involves uploading it to the staging environment, testing
it, and flipping it to the production environment. This flipping is called a VIP swap. VIP
stands for virtual IP.

 When you flip your application to a new environment, nothing is actually moved.
The Azure Fabric Controller labels the current running instances production, and
the other instances are labeled staging. The Azure Fabric Controller adjusts the
assignment of DNS and IP addresses in the Azure data center. The fact that nothing
moves makes it fast to do a cutover and reduces the chance of deployment issues. It
also makes it easy to flip back to the old setup if the new configuration doesn’t work
out as planned (not that that has ever happened to us).

Figure 2.11 In this window you complete the second step in creating an Azure hosted
services project. You can provide the name that will be in the URL for your site, as well as
the affinity group for geo-distribution. Assign a name carefully; it will permeate everything
you do with you service.

43Deploying with the Azure portal
 Before you set up your storage environment, we should say a few words about log-
ging and the diagnostic agent.

2.3.4 Putting on your logging boots

Logging is important in Azure. Like most production environments, you can’t attach
your debugger to the code running in the cloud. If there’s a problem, you need to
have good logging in place to help in diagnosing that problem.

 Learn to instrument your code with logging commands so that you have the right
information at your fingertips when you need it. Every time you fix a bug, you should
consider adding some information to the log as well.

 Azure runs a diagnostic agent on your virtual server while the server is running.
This agent gathers logs and diagnostic information. You can configure it in code, and
manage it remotely with the Azure management APIs. The default project templates
provided by the SDK include code that’ll start the diagnostic agent when your role
instance starts.

 The diagnostic agent uses the custom error log extensions to gather logs from sev-
eral standard sources and from any source you can think of. The standard sources
include Azure logs, Windows logs, IIS logs, the Windows event log, and performance
counters. The data is transferred to an Azure storage account of your choosing. The
diagnostic data is collected and then transferred, either on demand or according to a
schedule you set. When the data is there, you can do anything you want to with it.
Some data sources are copied to an Azure table, while others are copied to an Azure
blog account. The type of destination storage depends on the type of the source.

 We’ll cover logging in greater depth in chapter 18. For now, you need to set up the
storage environment you’ll need for your basic application.

2.3.5 Setting up your storage environment

Open your application in Visual Studio and make one more run locally to make sure
that it’s running fine. There’s one default setting you need to change when you’re
ready to deploy to the cloud. The default configuration specifies that the diagnostic
monitor uses development storage. Before you upload your code, you need to recon-
figure it to use the cloud for storage; cloud apps can’t reach your development storage
on your local desktop.

 Return to the portal and create a new service. But instead of choosing Hosted Ser-
vice, choose Storage Account for the type of service that you create. Figure 2.12 shows
that the process is similar to creating a hosted service. As before, you need to provide
a service name and a description.

 After the storage account is created, you’ll be given an account key that you can
use to securely access your online data, as shown in figure 2.13. We’ll go much deeper
into storage accounts in chapter 8, but for now just roll with it.

44 CHAPTER 2 Your first steps with a web role
Figure 2.12 You need to create a storage account to store your logs and diagnostic data in.
Creating a storage account is similar to creating a hosted service.

Figure 2.13 You can access your access keys after you’ve set up the storage account. These
keys give anyone access to your data, so keep them safe. They’re redacted here for that reason.

45Deploying with the Azure portal
Open the ServiceConfiguration.cscfg file and replace the following line to include
your storage account settings. This change reconfigures the diagnostic system to store
log data into your storage account.

 The old setting:

<Setting name="DiagnosticsConnectionString"
 value="UseDevelopmentStorage=true" />

 The new setting:

<Setting name="DiagnosticsConnectionString"
 value="DefaultEndpointsProtocol=https;AccountName=YourAccountName;

AccountKey=YourAccountKey” />

The AccountName parameter needs to be lowercase and URL friendly; we’ll cover why
in the chapters about Azure storage. The access key and the account name will be
important later on when you want to connect to your storage in the cloud. Your appli-
cation will still run locally; you’ve merely pointed the diagnostic system to store its logs
in your cloud-based storage system. After you’ve made this change, you’re ready to
package your fabulous shirt website and move it to the cloud.

2.3.6 Packaging and deploying your application

You have an Azure account, you’ve created a hosted services project, and you have
some parts for an application sitting on your local disk. Now you’re going to take your
application, and its configuration, and create a CS package for deployment.

One way to create the package is to use the CSpack utility in the SDK. Although this is
great for scripting, it can be tedious for those who live inside Visual Studio all day. A
quicker method is to right-click the Azure project in your solution (named AiA CH02 -
Hawaiian Shirt Shop in our sample), and choose Publish.

 The publish command calls CSpack for you, which creates the package, opens a file
explorer window that points to where the package files are placed, and then opens a
browser window to your Azure project portal page. Sign in to your portal, and then
select the project you want to deploy to in the Windows Azure section on the left. By
default, only the production environment is displayed. Click the small arrow on the
right side of the screen to show the staging environment. Click the Deploy button
under the gelatinous staging cube, and use the screen to upload the package and the
configuration file from the file explorer window that was opened for you. After you
select these files, we suggest that you use the text box on the bottom of the form to give
the deployment a label for history purposes. We usually use either a build number or

What does CS stand for?

You’ll see the acronym CS throughout the SDK and the tools for Azure. VB.NETers don’t
need to get upset; CS doesn’t stand for C#, but for Cloud Service.

46 CHAPTER 2 Your first steps with a web role
version number, but the label can be anything you want. In this example, we’re going
to enter version 1, build 14, ch2 sample preview, sp1 spring refresh.

 After you click the Deploy button, the files are uploaded, and you’re redirected to
the service page on the Azure portal. You can choose to deploy directly to the produc-
tion environment, but we recommend that you always deploy to the staging environ-
ment first. When the files are uploaded, the state of the service is set to Stopped.

 Deployment is as easy as uploading a few files and clicking the Run button, at least
for you. For Azure, the Fabric Controller kicks in, identifies some unused CPU cores,
deploys a virtual server image, copies over your bits, wires up a VLAN for your instances
only, reconfigures the load balancers, and then updates the service directories. While
all this is happening, which can take from seconds to minutes, depending on what
you’re deploying, you’ll see the status of your environment flip to Initializing; when
Azure is finished, the status changes to Started. When things are deployed, the cube
turns a nice shade of blue, and the status flips to Staging, as shown in figure 2.14. Note

Figure 2.14 Your sample application has been deployed to the staging environment and is
fully initialized. It’s assigned an easy-to-remember GUID-based host name so that you can test
your deployment.

47Summary
that servers are reserved for you when you do the initial upload of your code with the
Deploy button, and before you click Run. At this point, the cube turns blue, and you’ll
start being charged, even before you click Run. A little saying to remind you when
you’ll be charged is, “If the cube is grey, you’re O.K. If the cube is blue, a bill is due.”

 While your application is in the staging environment, it has a temporary URL with
a GUID as the host name of the service. The friendly name you picked when you cre-
ated the Azure project won’t be used until you migrate your application to produc-
tion. Before you do that, test your application while it’s in staging by using the
temporary URL, which is located toward the bottom of the window.

 When your application is running, the Run button changes to a Suspend button. If
you click this button, you’ll take your application offline. Azure is stopping the IIS
application in the background when you do this, and even though it’s suspended,
you’re still using a VM; the Azure hours for your billing continue to accrue.

 Now that you’ve tested your application in the staging environment, you can move
it to production.

2.3.7 Moving to production

Remember, when you move your application to production, you aren’t moving the
application or the settings. When you flip the button, Azure reconfigures the fabric to
route all new traffic from the outside world to this particular instance. The old pro-
duction environment becomes the new staging environment. Because nothing actu-
ally moves, you can easily roll back to the old version if things go wrong.

 To move your application to production, click the circular arrows in the center of
the screen. When you click them, you’re prompted to make sure that you want to do
that, and then the magic happens. Because Azure is making only a small configura-
tion change, the cutover takes only a moment.

 Congratulations! In only a few pages you’ve created a website where you can sell
awesome shirts, tested it in a local simulation of the cloud, published it to staging, and
promoted it to production. Now that business is rolling in, you’ll want to monitor how
much your application is costing you. Microsoft provides detailed information about
your usage of the Azure platform on a regular basis. You can look at these reports at
any time on the Azure portal and see where you are.

2.4 Summary
In this chapter we took you on a broad tour of how to start working with Azure. The
SDK is important to be able to build Azure applications, including all of the different
tools, APIs, and documentation needed to get started.

 In a few pages, if you were following along, you developed and deployed a web
application. Before either of us started using Windows Azure, we had never been able
to deploy a web application with several load-balanced nodes without weeks or
months of meetings, arguments, and planning the deployment and the production
configuration.

48 CHAPTER 2 Your first steps with a web role
 The one thing you should’ve noticed is how little difference there is, code-wise,
between what you would normally write for a website and what you write for Windows
Azure. The web application you built has nothing special about it, and it’ll run on a
normal on-premises server. Azure is just another place to run your code, much more
dynamic than any data center you’ve ever worked with, but the same. Our sample was
simple and didn’t delve into the more advanced scenarios, but the point is still valid.
The strength of Azure, for a developer, is how not different it is from what you do
every day.

 Deployment is almost a trivial matter. It doesn’t take a lot of effort to create a ser-
vice, upload the package, and promote it to production. The simple staging and pro-
duction environments make it easy to roll back to the old code in case the new
deployment goes horribly wrong.

 We’ll look into what’s under the covers in the next chapter, and see what Microsoft
had to do to build such a powerful platform, yet keep it simple.

Part 2

Understanding the
Azure service model

With the cloud basics and Windows Azure concepts under your belt, we
dial it up a notch. In part 2, we look at all the parts of the service model.

 Chapter 3 explains what the service model is, how Azure uses it, and how
Azure works behind the scenes. A brilliant chapter if there ever was one.

 The quality only gets better as we move into chapter 4, which discusses how
to reference the Azure APIs in your code and how to exploit the service runtime.

 In chapter 5, we trot out how to configure your service model using the con-
figuration files and the portal. An exciting chapter, especially if you like XML
and angle braces.

How Windows
Azure works
Now that you have a basic understanding of what you can do with Azure, let’s drill
deeper into the pieces of Azure and how to best work with them. In this chapter,
we’ll discuss how Windows Azure is architected and how it does the cloud magic
that it does. Understanding this background will help you develop better services,
be a better person, and get the most out of your Azure infrastructure.

3.1 The big shift
When Azure was first announced at the PDC in 2008, Microsoft wasn’t a recognized
player in the cloud industry. It was the underdog to the giants Google and Ama-
zon, which had been offering cloud services for years by that time. Building and

This chapter covers
� How Microsoft built Azure

� What a cloud operating system is

� How your application is provisioned and
managed in the cloud
51

52 CHAPTER 3 How Windows Azure works
deploying Azure was a big bet for Microsoft. It was a major change in the company’s
direction, from where Microsoft had been and where it needed to go in the future.
Up until that time, Microsoft had been a product company. It designed and built a
product, burnt it to CD, and sold it to customers. Over time, the product was
enhanced, but the product was installed and operated in the client’s environment.
The trick was to build the right product at the right time, for the right market.

 With the addition of Ray Ozzie to the Microsoft culture, there was a giant shift
toward services. Microsoft wasn’t abandoning the selling of products, but it was
expanding its expertise and portfolio to offer its products as services. Every product
team at Microsoft was asked if what they were doing could be enhanced and extended
with services. They wanted to do much more than just put Exchange in a data center
and rent it to customers. This became a fundamental shift in how Microsoft developed
code, how the code was shipped, and how it was marketed and sold to customers.

 This shift toward services wasn’t an executive whim, thought up during an exclu-
sive executive retreat at a resort we’ll never be able to afford to even drive by. It was
based on the trends and patterns the leaders saw in the market, in the needs of their
customers, and on the continuing impact of the internet on our world. Those in
charge saw that people needed to use their resources in a more flexible way, more
flexible than even the advances in virtualization were providing. Companies needed
to easily respond to a product’s sudden popularity as social networking spread the
word. Modern businesses were screaming that six months was too long to wait for an
upgrade to their infrastructure; they needed it now.

 Customers were also becoming more sensitive to the massive power consumption
and heat that was generated by their data centers. Power and cooling bills were often
the largest component of their total data-center cost. Coupling this with a concern
over global warming, customers were starting to talk about the greening of IT. They
wanted to reduce the carbon footprint that these beasts produced. Not only did they
want to reduce the power and cooling waste, but also the waste of lead, packing mate-
rials, and the massive piles of soda cans produced by the huge number of server
administrators that they had to employ.

3.1.1 The data centers of yore

Microsoft is continually improving all the important aspects of its data centers. It
closely manages all the costs of a data center, including power, cooling, staff, local
laws, risk of disaster, availability of natural resources, and many other factors. While
managing all this, it has designed its fourth generation of data centers. Microsoft
didn’t just show up at this party; it planned it by building on a deep expertise in build-
ing and running global data centers over the past few decades.

 The first generation of data centers is still the most common in the world. Think of
the special room with servers in it. It has racks, cable ladders, raised floors, cooling,
uninterruptable power supplies (UPSs), maybe a backup generator, and it’s cooled to
a temperature that could safely house raw beef. The focus is placed on making sure

53The big shift
the servers are running; no thought or concern is given to the operating costs of the
data center. These data centers are built to optimize the capital cost of building them,
with little thought given to costs accrued beyond the day the center opens. (By the
way, the collection of servers under your desk doesn’t qualify as a Generation 1 data
center. Please be careful not to kick a cord loose while you do your work.)

 Generation 2 data centers take all the knowledge learned by running Generation 1
data centers and apply a healthy dose of thinking about what happens on the second
day of operation. Ongoing operational costs are reduced by optimizing for sustain-
ability and energy efficiency. To meet these goals, Microsoft powers its Quincy, Wash-
ington, data center with clean hydroelectric power. Its data center in San Antonio,
Texas, uses recycled civic gray water to cool the data center, reducing the stress on the
water sources and infrastructure in the area.

3.1.2 The latest Azure data centers

Even with the advances found in Generation 2 data centers, companies couldn’t find
the efficiencies and scale needed to combat rising facility costs, let alone meet the
demands that the cloud would generate. The density of the data center needed to go
up dramatically, and the costs of operations had to plummet. The first Generation 3
data center, located in Chicago, Illinois, went online on June 20, 2009. Microsoft con-
siders it to be a mega data center, which is a class designation that defines how large
the data center is. The Chicago data center looks like a large parking deck, with park-
ing spaces and ramps for tractor trailers. Servers are placed into containers, called
CBlox, which are parked in this structure. A smaller building that looks more like a tra-
ditional data center is also part of the complex. This area is for high-maintenance
workloads that can’t run in Azure.

CBlox are made out of the shipping containers that you see on ocean-going vessels
and on eighteen wheelers on the highways. They’re sturdily built and follow a standard
size and shape that are easy to move around. One CBlox can hold anywhere from 1,800
to 2,500 servers. This is a massive increase in data-center density, 10 times more dense
than a traditional data center. The Chicago mega data center holds about 360,000 serv-
ers and is the only primary consumer of a dedicated nuclear power plant core run by
Chicago Power & Light. How many of your data centers are nuclear powered?

 Each parking spot in the data center is anchored by a refrigerator-size device that
acts as the primary interconnect to the rest of the data center. Microsoft developed a
standard coupler that provides power, cooling, and network access to the container.
Using this interconnect and the super-dense containers, massive amounts of capac-
ity can be added in a matter of hours. Compare how long it would take your com-
pany to plan, order, deploy, and configure 2,500 servers. It would take at least a year,
and a lot of people, not to mention how long it would take to recycle all the card-
board and extra parts you always seem to have after racking a server. Microsoft’s goal
with this strategy is to make it as cheap and easy as possible to expand capacity as
demand increases.

54 CHAPTER 3 How Windows Azure works
 The containers are built to Microsoft’s specifications by a vendor and delivered on
site, ready for burn-in tests and allocation into the fabric. Each container includes net-
working gear, cooling infrastructure, servers, and racks, and is sealed against the weather.

 Not only are the servers now packaged and deployed in containers, but the neces-
sary generators and cooling machinery are designed to be modular as well. To set up
an edge data center, one that’s located close to a large-demand population, all that’s
needed is the power and network connections, and a level paved surface. The trucks
with the power and cooling equipment show up first, and the equipment is deployed.
Then the trucks with the computing containers back in and drop their trailers, leaving
the containers on the wheels that were used to deliver them. The facility is protected
by a secure wall and doorway with monitoring equipment. The use of laser fences is
pure speculation and just a rumor, as far as we know. The perimeter security is impor-
tant, because the edge data center doesn’t have a roof! Yes, no roof! Not using a roof
reduces the construction time and the cooling costs. A roof isn’t needed because the
containers are completely sealed.

 Microsoft opened a second mega data center, the first outside the United States, in
Dublin, Ireland, on July 1, 2009. When Azure became commercially available in Janu-
ary 2010, the following locations were known to have an Azure data center: Texas, Chi-
cago, Ireland, Amsterdam, Singapore, and Hong Kong. Although Microsoft won’t tell
where all its data centers are for security reasons, it purports to have more than 10 and
fewer than 100 data centers. Microsoft already has data centers all over the world to
support its existing services, such as Virtual Earth, Bing Search, Xbox Live, and others.
If we assume there are only 10, and each one is as big as Chicago, then Microsoft
needs to manage 3.5 million servers as part of Azure. That’s a lot of work.

3.1.3 How many administrators do you need?

Data centers are staffed with IT pros to care and feed the servers. Data centers need a
lot of attention, ranging from hardware maintenance to backup, disaster recovery,
and monitoring. Think of your company. How many people are allocated to manage
your servers? Depending on how optimized your IT center is, the ratio of person-to-
servers can be anywhere from 1:10 to 1:100. With that ratio, Microsoft would need
35,000 server managers. Hiring that many server administrators would be hard, con-
sidering that Microsoft employs roughly 95,000 people already.

 To address this demand, Azure was designed to use as much automation as possi-
ble, using a strategy called lights-out operations. This strategy seeks to centralize and
automate as much of the work as possible by reducing complexity and variability. The
result is a person-to-servers ratio closer to 1:30,000 or higher.

 Microsoft is achieving this level of automation mostly by using its own off-the-shelf
software. Microsoft is literally eating its own dog food. It’s using System Center Opera-
tions Manager and all the related products to oversee and automate the management
of the underlying machines. It’s built custom automation scripts and profiles, much
like any customer would do.

55The big shift
 One key strategy in effectively managing a massive number of servers is to provi-
sion them with identical hardware. In traditional data centers where we’ve worked,
each year brought the latest and greatest of server technology, resulting in a wide vari-
ety of technology and hardware diversity. We even gave each server a distinct name,
such as Protoss, Patty, and Zelda. With this many servers, you can’t name them; you
have to number them. Not just by server, but by rack, room, and facility. Diversity is
usually a great thing, but not when you’re managing millions of boxes.

 The hardware in each Azure server is optimized for power, cost, density, and man-
agement. The optimization process drives exactly which motherboard, chipset, and
every other component needs to be in the server; this is truly bang for your buck in
action. Then that server recipe is kept for a specific lifecycle, only moving to a new bill
of materials when there are significant advantages to doing so.

3.1.4 Data center: the next generation

Microsoft isn’t done. It’s already spent years planning the fourth generation of data
centers. Much like the edge data center we described previously, the whole data cen-
ter is located outside. The containers make it easy to scale out the computing
resources as demand increases; prior generations of data centers had to have the com-
plete data center shell built and provisioned, which meant provisioning the cooling
and power systems as if the data center were at maximum capacity from day one. The
older systems were too expensive to expand dynamically. The fourth generation data
centers are using an extendable spine of infrastructure that the computing containers
need, so that both the infrastructure and the computing resources are easily scaled
out (see figure 3.1). All of this is outside, in a field of grass, without a roof. They’ll be
the only data centers in the world that need a grounds crew.

Data spine 1

Data spine 2

Office space
and traditional
data center

Power

Cb
lo

x

Cb
lo

x

Cb
lo

x

Cb
lo

x
Cb

lo
x

Cb
lo

x

Cb
lo

x

Cb
lo

x

Chiller

Power

Cb
lo

x
Cb

lo
x

Cb
lo

x
Cb

lo
x

Cb
lo

x
Cb

lo
x

Cb
lo

x
Cb

lo
x

Chiller

Power

Cb
lo

x

Cb
lo

x

Cb
lo

x

Cb
lo

x
Cb

lo
x

Cb
lo

x

Cb
lo

x

Cb
lo

x

Chiller Power

Cb
lo

x

Cb
lo

x

Cb
lo

x

Cb
lo

x
Cb

lo
x

Cb
lo

x

Cb
lo

x

Cb
lo

x

Chiller Power

Cb
lo

x

Cb
lo

x

Cb
lo

x

Cb
lo

x
Cb

lo
x

Cb
lo

x

Cb
lo

x

Cb
lo

x

Chiller

Power

Cb
lo

x
Cb

lo
x

Cb
lo

x
Cb

lo
x

Chiller Power

Cb
lo

x
Cb

lo
x

Cb
lo

x
Cb

lo
x

Chiller Power

Cb
lo

x
Cb

lo
x

Cb
lo

x
Cb

lo
x

Chiller Power

Cb
lo

x
Cb

lo
x

Cb
lo

x
Cb

lo
x

Chiller

Power

Cb
lo

x
Cb

lo
x

Cb
lo

x
Cb

lo
x

Chiller

Power

Cb
lo

x
Cb

lo
x

Cb
lo

x
Cb

lo
x

Cb
lo

x
Cb

lo
x

Cb
lo

x
Cb

lo
x

Chiller

Power

Cb
lo

x
Cb

lo
x

Cb
lo

x
Cb

lo
x

Chiller

Power

Cb
lo

x
Cb

lo
x

Cb
lo

x
Cb

lo
x

Cb
lo

x
Cb

lo
x

Cb
lo

x
Cb

lo
x

Chiller

Power

Cb
lo

x
Cb

lo
x

Cb
lo

x
Cb

lo
x

Chiller

Power

Cb
lo

x
Cb

lo
x

Cb
lo

x
Cb

lo
x

Cb
lo

x
Cb

lo
x

Cb
lo

x
Cb

lo
x

Chiller

Power

Cb
lo

x
Cb

lo
x

Cb
lo

x
Cb

lo
x

Chiller

Figure 3.1 Generation
4 data centers are built
on extensible spines.
This configuration
makes it easy to add
not only computational
capacity, but the
required infrastructure
as well, including power
and cooling.

56 CHAPTER 3 How Windows Azure works
OK, you’re impressed. Microsoft has a lot of servers, some of them are even outside, and
all the servers are managed in an effective way. But how does the cloud really work?

3.2 Windows Azure, an operating system for the cloud
Think of the computer on your desk today. When you write code for that computer,
you don’t have to worry about which sound card it uses, which type of printer it’s con-
nected to, or which or how many monitors are used for the display. You don’t worry, to
a degree, about the CPU, about memory, or even about how storage is provided (solid-
state drive [SSD], carrier pigeon, or hard disk drive). The operating system on that
computer provides a layer of abstraction away from all of those gritty details, frees you
up to focus on the application you need to write, and makes it easy to consume the
resources you need. The desktop operating system protects you from the details of the
hardware, allocates time on the CPU to the code that’s running, makes sure that code
is allowed to run, plays traffic cop by controlling shared access to resources, and gen-
erally holds everything together.

 Now think of that enterprise application
you want to deploy. You need a DNS, network-
ing, shared storage, load balancers, plenty of
servers to handle load, a way to control access
and permissions in the system, and plenty of
other moving parts. Modern systems can get
complicated. Dealing with all of that complex-
ity by hand is like compiling your own video
driver; it doesn’t provide any value to the busi-
ness. Windows Azure does all this work, but on
a much grander scale and for distributed
applications (see figure 3.2) by using some-
thing called the fabric. Let’s look into this fab-
ric and see how it works.

 Windows Azure takes care of the whole
platform so you can focus on your application.
The term fabric is used because of the similar-
ity of the Azure fabric to a woven blanket. Each thread on its own is weak and can’t do
a lot. When they’re woven together into a fabric, the whole blanket becomes strong
and warm. The Azure fabric consists of thousands of servers, woven together and
working as a cohesive unit. In Azure, you don’t need to worry about which hardware,
which node, what underlying operating system, or even how the nodes are load bal-
anced or clustered. Those are just gritty details best left to someone else. You just need
to worry about your application and whether it’s operating effectively. How much time
do you spend wrangling with these details for your on-premises projects? It’s probably
at least 10–20 percent of the total project cost in meetings alone. There are savings to
be gained by abstracting away these issues.

Your app Your app

Windows Server Windows Azure

Kernel
Task scheduler

Hardware
abstraction

layer

Fabric Controller
Task scheduler

Hardware
abstraction

layer

Security

Management

Security

Management

Disk CPU GPU Memory

Figure 3.2 The Fabric Controller is like
the kernel of your desktop operating
system. It’s responsible for many of the
same tasks, including resource sharing,
code security, and management.

57The Fabric Controller
 In fact, Azure manages much more than just servers. There are plenty of other
assets that are managed. Azure manages routers, switches, IP addresses, DNS servers,
load balancers, and dynamic virtual local area networks (VLANs). In a static data cen-
ter, managing all these assets is a complex undertaking. It’s even more complex when
you’re managing multiple data centers that need to operate as one cohesive pool of
resources, in a dynamic and real-time way.

 If the fabric is the operating system, then the Fabric Controller is the kernel.

3.3 The Fabric Controller
Operating systems have at their core a kernel. This kernel is responsible for being the
traffic cop in the system. It manages the sharing of resources, schedules the use of pre-
cious assets (CPU time), allocates work streams as appropriate, and keeps an eye on
security. The fabric has a kernel called the Fabric Controller (FC). Figure 3.3 shows
the relationship between Azure, the fabric, and the FC. Understanding these relation-
ships will help you get the most out of the platform.

 The FC handles all of the jobs a normal operating system’s kernel would handle. It
manages the running servers, deploys code, and makes sure that everyone is happy
and has a seat at the table.

 The FC is an Azure application in and of itself, running multiple copies of itself for
redundancy’s sake. It’s largely written in managed code. The FC contains the com-
plete state of the fabric internally, which is replicated in real time to all the nodes that
are part of the FC. If one of the primary nodes goes offline, the latest state informa-
tion is available to the remaining nodes, which then elect a new primary node.

 The FC manages a state machine for each service deployed, setting a goal state
that’s based on what the service model for the service requires. Everything the FC does
is in an effort to reach this state and then to maintain that state when it’s reached. We’ll
go into the details of what the service model is in the next few pages, but for now, just
think of it as a model that defines the needs and expectations that your service has.

 The FC is obviously very busy. Let’s look at how it manages to seamlessly perform
all these tasks.

Web
role

Worker
role

Fabric
controller

BLOBs Queues Tables

Fabric

Windows Azure

Figure 3.3 The relationship
between Azure, the fabric, and
the Fabric Controller (FC). The
fabric is an abstract model of
the massive number of servers
in the Azure data center. The
FC manages everything. For
example, it recovers failed
servers and moves your
application to a healthy server.

58 CHAPTER 3 How Windows Azure works
3.3.1 How the FC works: the driver model

The FC follows a driver model, just like a conventional OS. Windows has no idea how
to specifically work with your video card. What it does know is how to speak to a video
driver, which in turn knows how to work with a specific video card. The FC works with
a series of drivers for each type of asset in the fabric. These assets include the
machines, as well as the routers, switches, and load balancers.

 Although the variability of the environment is low today, over time new types of
each asset are likely to be introduced. The goal is to reduce unnecessary diversity, but
you’ll have business needs that require breadth in the platform. Perhaps you’ll get a

software load balancer for free, but
you’ll have to pay a little bit more per
month to use a hardware load bal-
ancer. A customer might choose a cer-
tain option, such as a hardware load
balancer, to meet a specific need. The
FC would have a different driver for
each piece of infrastructure it con-
trols, allowing it to control and com-
municate with that infrastructure.
 The FC uses these drivers to send
commands to each device that help
these devices reach the desired run-
ning state. The commands might cre-
ate a new VLAN to a switch or allocate
a pool of virtual IP addresses. These
commands help the FC move the state
of the service towards the goal state.

Figure 3.4 shows how a service progresses to the goal state, from the developer writing
the code and defining the service model to the FC allocating and managing the
resources the service requires.

 While the FC is moving all your services toward the running state, it’s also allocat-
ing resources and managing the health of the nodes in the fabric and of your services.

3.3.2 Resource allocation

One of the key jobs of the FC is to allocate resources to services. It analyzes the service
model of the service, including the fault and update domains, and the availability of
resources in the fabric. Using a greedy resource allocation algorithm, it finds which
nodes can support the needs of each instance in the model. When it has reserved the
capacity, the FC updates its data structures in one transaction. After the update, the
goal state of each node is changed, and the FC starts moving each node towards its goal
state by deploying the proper images and bits, starting up services, and issuing other
commands through the driver model to all the resources needed for the change.

Developer

Deployer

Deployment

Goal state

•Development
•Models
•New services and updates

•Provisions for runtime configuration

•Allocation of Azure resources
•Network is configured

•Monitor health
•Take action to fix issues

Figure 3.4 How the lifecycle of an Azure service
progresses towards a running state. Each role on
your team has a different set of responsibilities.
From here the FC does what it needs to make sure
your servers are always running.

59The service model and you
3.3.3 Instance management

The FC is also responsible for managing the health of all of the nodes in the fabric, as
well as the health of the services that are running. If it detects a fault in a service, it
tries to remediate that fault, perhaps by restarting the node or taking it offline and
replacing it with a different node in the fabric.

 When a new container is added to the data center, the FC performs a series of
burn-in tests to ensure that the hardware delivered is working correctly. Part of this
process results in the new resource being added into the inventory for the data center,
making it available to be allocated by the FC.

 If hardware is determined to be faulty, either during installation or during a fault,
the hardware is flagged in the inventory as being unusable and is left alone until later.
When a container has enough failures, the remaining workloads are moved to differ-
ent containers and then the whole container is taken offline for repair. After the prob-
lems have been fixed, the whole container is retested and returned into service.

3.4 The service model and you
The driving force behind what the FC does is the service model that you define for
your service (see figure 3.5). You define the service model indirectly by defining the
following things when you’re developing a service:

� Some configuration about what the pieces to your service are
� How the pieces communicate
� Expectations you have about the availability of the service

The service model is broken into
two pieces of configuration and
is deployed with your service.
Each piece focuses on a different
aspect of the model. In the fol-
lowing sections, you’re going to
learn about these configuration
pieces and how to customize
them. We’ll also show you how
best to manage all the pieces of
your configuration.

3.4.1 Defining configuration

Your solution in Visual Studio contains these two pieces of configuration in different
files, both of which are found in the Azure Service project in your solution:

� Service definition file (ServiceDefinition.csdef)
� Service configuration file (ServiceConfiguration.cscfg)

The service definition file defines what the roles and their communication endpoints
are in your service. This includes public HTTP traffic for a website, or the endpoint

Service model •ServiceConfiguration.cscfg

Operating
model

Configuration
model

Infrastructure
model

•ServiceDefinition.csdef

•Secret Microsoft sauce

Figure 3.5 The service model consists of several different
pieces of information. This model helps Azure run your
application correctly.

60 CHAPTER 3 How Windows Azure works
details for a web service. You can also configure your service to use local storage
(which is different from Azure storage) and any custom configuration elements of the
service configuration file. The service definition can’t be changed at runtime; any
change requires a new deployment of your service. Your service is restricted to using
only the network endpoints and resources that are defined in this model. We’re going
to look at the service definition file in depth in chapter 4; for now you can think of
this piece of the configuration as defining what the infrastructure of your service is,
and how the parts fit together.

 The service configuration file, which we’ll discuss in detail in chapter 5, includes
the entire configuration needed for the role instances in your service. Each role has
its own dedicated part of the configuration. The contents of the configuration file can
be changed at runtime, which removes the need to redeploy your application when
some part of the role configuration changes. You can also access the configuration in
code, similar to how you might read a web.config file in an ASP.NET application.

3.4.2 Adding a custom configuration element

In many applications, you store connection strings, default settings, and secret pass-
words (please don’t!) in the app.config or web.config file. You’ll often do the same
with an Azure application. First, you need to declare the format of the new configura-
tion setting in the .csdef file by adding a ConfigurationSettings node inside the role
you want the configuration to belong to:

<ConfigurationSettings>
 <Setting name="BannerText"/>
</ConfigurationSettings>

Adding this node defines the schema of the .cscfg file for that role, which strongly
types the configuration file itself. If there’s an error in the configuration file during a
build, you’ll receive a compiler warning. This is a great feature because there’s nothing
worse than deploying code when there’s a simple little problem in a configuration file.

 Now that you’ve told Azure the new format of your configuration files, namely, that
you want a new setting called BannerText, you can add that node to the service config-
uration file. Add the following XML into the appropriate role node in the .cscfg file:

<ConfigurationSettings>
 <Setting name="BannerText" value="KlatuBaradaNikto"/>
</ConfigurationSettings>

During runtime, you want to read in this configuration data and use it for some pur-
pose. Remember that all configuration settings are stored as strings and must be cast
to the appropriate type as needed. In this case, you want a string to assign to your label
control text, so that you can use it as is.

txtPassword.Text = RoleEnvironment.GetConfigurationSettingValue("BannerText");

Having lines of code like this all over your application can get messy and hard to man-
age. Sometimes developers consolidate their configuration access code into one class.
This class’s only job is to be a façade into the configuration system.

61The service model and you
3.4.3 Centralizing file-reading code

It’s a best practice to move your entire configuration file-reading code from wherever
it’s sprinkled into a ConfigurationManager class of your own design. Many people use
the term service instead of manager, but we think that the term service is too overloaded
and that manager is just as clear. Moving your code centralizes all the code that knows
how to read the configuration in one place, making it easier to maintain. More impor-
tantly, it removes the complexity of reading the configuration from the relying code,
which illustrates the principle of separation of concerns. Moving the code to a central-
ized location also makes it easier to mock out the implementation of the Configura-
tionManager class for easier testing purposes (see figure 3.6). Over time, when the
APIs for accessing configuration change or if the location of your configuration
changes, you’ll have only one place to go to make the changes you need.

 Reading configuration data in this manner might look familiar to you. You’ve
probably done this for your current applications, reading in the settings stored in a
web.config or an app.config file. When migrating an existing application to Azure,
you might be tempted to keep the configuration settings where they are. Although
keeping them in place reduces the amount of change to your code as you migrate it to
Azure, it does come at a cost. Unfortunately, the configuration files that are part of
your roles are frozen and are read-only at runtime; you can’t make changes to them
after your package is deployed. If you want to change settings at runtime, you’ll need
to store those settings in the .cscfg file. Then, when you want to make a change, you
only have to upload a new .cscfg file or click Configure on the service management
page in the portal.

 The FC takes these configuration files and builds a sophisticated service model that
it uses to manage your service. At this time, there are about three different core model
templates that all other service models inherit from. Over time, Azure will expose
more of the service model to the developer, so that you can have more fine-grained
control over the platform your service is running on.

Figure 3.6 A well-designed
ConfigurationManager
class can centralize the busy
work of managing the
configuration system.

62 CHAPTER 3 How Windows Azure works
3.4.4 The many sizes of roles

Each role defined in your service model is basically a template for a server you want to
be deployed in the fabric. Each role can have a different job and a different configura-
tion. Part of that configuration includes local storage and the number of instances of
that role that should be deployed. How these roles connect and work together is part
of why the service model exists.

 Because each role might have different needs, there are a variety of VM sizes that
you can request in your model. Table 3.1 lists each VM size. Each step up in size dou-
bles the resources of the size below it.

Each size is basically a slice of how big a physical server is, which makes it easy to allo-
cate resources and keeps the numbers round. Because each physical server has eight
CPU cores, allocating an extra-large VM to a role is like dedicating a whole physical
machine to that instance. You’ll have all the CPU, RAM, and disk available on that
machine. Which size you want is defined in the ServiceDefinition.csdef file on a role-
by-role basis. The default size, if you don’t declare one, is small. To change the default
size, add the following code, substituting ExtraLarge with the size that you want:

<WorkerRole name="ImageCompresser" vmsize="ExtraLarge">

If you’re using Visual Studio 2010, you can define the role configuration by double-
clicking the name of your web role in the Roles folder of your Cloud Service project.
Choose Properties and click the Configuration tab, as shown in figure 3.7.

 The service model is also used to de-
fine fault domains and update domains,
which we’ll look at next.

Figure 3.7 Configuring your role doesn’t have to
be a gruesome XML affair. You can easily do it in
Visual Studio 2010 when you view the properties
information for the role you want to configure.

Table 3.1 The available sizes of the Azure VMs

VM size Dedicated CPU cores Available memory Local disk space

Small 1 1.7 GB 250 GB

Medium 2 3.5 GB 500 GB

Large 4 7 GB 1,000 GB

Extra large 8 15 GB 2,000 GB

63It’s not my fault
3.5 It’s not my fault
Fault domains and update domains determine what portions of your service can be
offline at the same time, but for different reasons. They’re the way that you define
your uptime requirements to the FC and how you describe how your service updates
will happen when you have new code to deploy.

 Let’s examine each type of domain in detail. Then we’ll present a service model
scenario that shows you how fault and update domains help increase fault tolerance in
your cloud service.

3.5.1 Fault domains

Fault domains are used to make sure that a set of elements in your service isn’t tied to a
single point of failure. Fault domains are based more on the physical structure of the
data center than on your architecture. Your service should typically have three or
more fault domains. If you have only one fault domain, all the parts of your service
could potentially be running on one rack, in the same container, connected to the
same switch. If there’s any failure in that chain, there’s a high likelihood of cata-
strophic failure for your service. If that rack fails, or the switch in use fails, then your
service is completely offline. By breaking your service into several fault domains, the
FC ensures that those fault domains don’t share any dependent infrastructure, which
protects your service against single points of failure.

 In general, the FC will define three fault domains, meaning that only about a third
of them can become unavailable because of a single fault. In a failure scenario, the FC
immediately tries to deploy your roles to new nodes in the fabric to make up for the
failed nodes. Currently, the Azure SDK and service model don’t let you define your
own number of fault domains; the default number is thought to be three domains.

3.5.2 Update domains

The second type of domain defined in the service model is the update domain. The
concept of an update domain is similar to a fault domain. An update domain is the
unit of update you’ve declared for your service. When performing a rolling update,
code changes are rolled out across your service one update domain at a time. Cloud
services tend to be big and tend to always need to be available. The update domain
allows a rolling update to be used to upgrade your service, without having to bring the
entire service down. These domains are usually defined to be orthogonal to your fault
domains. In this manner, if an update is being pushed out while there’s a massive
fault, you won’t lose all of your resources, just a piece of them.

 You can define the number of update domains for your service in your ServiceDef-
inition.csdef file as part of the ServiceDefinition tag at the top of the file.

<ServiceDefinition xmlns="http://schemas.microsoft.com/ServiceHosting/
2008/10/ServiceDefinition"
name="HawaiianShirtShop"
upgradeDomainCount="3">

64 CHAPTER 3 How Windows Azure works
If you don’t define your own update domain setting, the service model will default to
five update domains. Your role instances are assigned to update domains as they’re
started up, and the FC tries to keep the domains balanced with regard to how many
instances are in each domain.

3.5.3 A service model example

If you had a service running on
Azure, you might need six role
instances to handle the demand on
your service, but you should request
nine instances instead. You request
more than you need because you
want a high degree of tolerance in
your architecture. As shown in fig-
ure 3.8, you would have three fault
domains and three update domains
defined. If there’s a fault, only a
third of your nodes are affected.
Also, only a third of the nodes will ever be updated at one time, controlling the num-
ber of nodes taken out of service for updates, as well as reducing the risk of any
update taking down the whole service.

 In this scenario, a broken switch might take down the first fault domain, but the
other two fault domains would not be affected and would keep operating. The FC can
manage these fault domains because of the detailed models it has for the Azure data
center assets.

 The cloud is not about perfect computing, it’s about deploying services and man-
aging systems that are fault tolerant. You need to plan for the faults that are inevitable.
The magic of cloud computing makes it easy to scale big enough so that a few node
failures don’t really impact your service.

 All this talk about service models and an overlord FC is nice, but at the end of the
day, the cloud is built from individual pieces of hardware. There’s a lot of hardware,
and it all needs to be managed in a hands-off way. There are several approaches to
applying updates to a service that’s running. You’ll see in the next section that you can
perform either manual or automated rolling upgrades, or you can perform a full
static upgrade (also called a VIP swap).

3.6 Rolling out new code
No matter how great your code is, you’ll have to perform an upgrade at some point if
for no other reason than to deploy a new feature a user has requested. It’s important
that you have a plan for updating the application and have a full understanding of the
moving parts. There are two major ways to roll out an upgrade: a static upgrade or a roll-
ing upgrade.

Update
Domain 1

Fault
Domain 1

Fault
Domain 2

Fault
Domain 3

Update
Domain 2

Update
Domain 3

Isolated
hardware

Isolated
hardware

Isolated
hardware

Role A
Instance 1

Role A
Instance 2

Role A
Instance 3

Role B
Instance 1

Role B
Instance 2

Role B
Instance 3

Role C
Instance 1

Role C
Instance 2

Role C
Instance 3

Figure 3.8 Fault and update domains help increase
fault tolerance in your cloud service. This figure shows
three instances of each of three roles.

65Rolling out new code
 When you perform a static upgrade, you do everything at once and you have to
take down your system, at least for a while. You should carefully plan your application
architecture to avoid a static upgrade because it impacts the uptime of your service
and can be more complicated to roll out. A rolling upgrade keeps your service up and
running the whole time. You should always consider performing the upgrade in the
staging environment first to make sure the deployment goes well. After a full battery
of end-to-end and integration tests are passed, you can proceed with your plans for
the production environment.

 If the number of endpoints for a role has changed, or if the port numbers have
changed, you won’t be able to do either a static or a rolling upgrade. You’ll be forced
to tear down the deployment and redeploy.

3.6.1 Static upgrades

A static upgrade is sometimes referred to as a forklift upgrade because you’re touching
everything all at once. You usually need to do a static upgrade when there’s a signifi-
cant change in the architecture and plumbing of your application. Perhaps there’s a
whole new architecture of how the services are structured and the database has been
completely redesigned. In this case, it can be hard to upgrade just one piece at a time
because of interdependencies in the system. This type of upgrade is required if you’re
changing the service model in any way.

 This approach is also called a VIP swap because the FC is swapping the virtual IP
addresses that are assigned to your resources. When a swap is done, the old staging
environment becomes your new production environment and your old production
environment becomes your new staging environment (see figure 3.9). This can hap-
pen pretty fast, but your service will be down while it’s happening and you need to

Figure 3.9 Performing a VIP swap, or static upgrade, is as easy as clicking the arrows. If things
go horribly awry, you can always swap back to the way things were. It’s like rewind for your
environment.

66 CHAPTER 3 How Windows Azure works
plan for that. The one great advantage to this approach is that you can easily swap
things back to the way they were if things don’t work out.

 Your upgrade plan should consider how long the new staging (aka old produc-
tion) environment should stay around. You might want to keep it for a few days until
you know the upgrade has been successful. At that point, you can completely tear
down the environment to save resources and money.

 To perform a VIP swap, log in to the Azure portal, choose the service that you want
to upgrade in the Windows Azure section, and then click the Summary tab. Next,
deploy your new application version to the staging environment. After everything is all
set up and you’re happy with it, click the circular button in the middle. The change-
over takes only a few minutes. If the new version isn’t working as expected, you can
easily click the button again and swap the two environments back where they came
from. Voila! The old version is back online.

 You can also use the service management API to perform the swap operation. This
is one reason why you want to make sure that you’ve named your deployments clearly,
at least more clearly than we did in this example.

VIP swaps are nice, but some customers need more flexibility in the way they per-
form their rollouts. For them, there’s the rolling upgrade.

3.6.2 Rolling upgrades

If your roles are carrying state and you don’t want to lose that state as you completely
change to a new set of servers, then rolling upgrades are for you. Or maybe you want
to upgrade the instances of a specific role instead of all of the roles. For example, you
might want to deploy an updated version of the website, without impacting the pro-
cessing of the shopping carts that’s being performed by the backend worker roles.
Remember that when doing a rolling upgrade, you can’t change the service model of
the service that you’re upgrading. If you’ve changed the structure of the service con-
figuration, the number of endpoints, or the number of roles, you’ll have to do a VIP
swap instead.

 There are two types of rolling upgrades: the automatic and the manual. When you
perform an automatic rolling upgrade, the FC drains the traffic to the set of instances
that’s in the first update domain (they’re numbered, starting with 0) by removing
them from the load balancer’s configuration. After the traffic is drained, the instances
are stopped, the new code is deployed, and then the instances are restarted. After
they’re back up and running, they’re added back into the load balancer’s list of
machines to route traffic to. At this point, the FC moves on to the next update domain
in the list. It’ll proceed in this fashion until all the update domains have been ser-
viced. Each domain should take only a few minutes.

 If your situation requires that you control how the progression moves from one
domain to the next, you can choose to do a manual rolling upgrade. When you
choose this option, the FC stops after updating a domain and waits for your permis-
sion to move on to the next one. This gives you a chance to check the status of the
machines and the environment before moving forward with the rollout.

67Rolling out new code
To perform a rolling upgrade, log in to the Azure portal, choose the service that you
want to upgrade in the Windows Azure section, and then click the Summary tab. Click
the Upgrade button for the deployment you want to upgrade. You’re presented with
some options, as shown in figure 3.10.

 You can choose to perform an automatic or a manual upgrade. You can upgrade
all the roles in the package or just one of them. As in a normal deployment, you also
need to provide a service package, configuration, and a deployment name.

 If you choose to upgrade a single role, then only the instances for that role in each
domain are taken offline for upgrading. The other role instances are left untouched.

 You can also perform a rolling upgrade by using the service management API.
When you use the management API, you have to store the package in BLOB storage
before starting the process. As with a VIP swap, you need to post a command to a spe-
cific URL (all these commands are covered in detail in chapter 18). Customize the
URL to match the settings for the deployment you want to upgrade:

https://management.core.windows.net/<subscription-id>/services/
hostedservices/<service-name>

/deployments/<deployment-name>/?comp=upgrade

Figure 3.10 Performing a rolling upgrade is easy. Click Upgrade on the Summary page
for the service to see this page and choose your options. You can upgrade all of the
roles or just one role during an upgrade.

68 CHAPTER 3 How Windows Azure works
The body of the command needs to contain the elements shown in the following
code. You need to change the code to supply the parameters that match your situa-
tion. The following sample performs a fully automatic upgrade on all the roles.

<?xml version="1.0" encoding="utf-8"?>
<UpgradeDeployment xmlns="http://schemas.microsoft.com/windowsazure">
 <Mode>auto</Mode>
 <PackageUrl>http://azureinaction.blob.core.windows.net/
deployment_container/new_code.cspkg </PackageUrl>
 <Configuration>***the contents of the config file***</Configuration>
 <Label>v3.2</Label>
</UpgradeDeployment>

Performing a manual rolling update with the service management API is a little trick-
ier, and requires several calls to the WalkUpgradeDomain method. The upgrades are
performed in an asynchronous manner; the first command starts the process. As the
upgrade is being performed, you can check on the status by using Get Operation
Status with the operation ID that was supplied to you when you started the operation.

 We’ve covered how to upgrade running instances and talked about what the fabric
is. Now we’ll go one level deeper and explore the underlying environment.

3.7 The bare metal
No one outside of the Azure team truly knows the nature of the underlying servers
and other hardware, and that’s OK because it’s all abstracted away by the cloud OS.
But you can still look at how your instances are provisioned and how automation is
used to do this without hiring the entire population of southern Maine to manage it.

 Each instance is really a VM running Windows Server 2008 Enterprise Edition x64
bit, on top of Hyper-V. Hyper-V is Microsoft’s enterprise virtualization solution, and it’s
available to anyone. Hyper-V is based on a hypervisor, which manages and controls the
virtual servers running on the physical server. One of the virtual servers is chosen to
be the host OS. The host OS is a virtual server as well, but it has the additional respon-
sibilities of managing the hypervisor and the underlying hardware.

 Hyper-V has two features that help in maximizing the performance of the virtual
servers, while reducing the overall cost of running those servers. One of these features
is core-and-socket parking; the other is the reduced footprint of Hyper-V itself. Core-
and-socket parking needs to be supported by the physical CPU.

 Let’s drill way down into the workings of Hyper-V, how the virtual servers connect
to it, and the processes of booting up these servers and getting your instances up and
running.

3.7.1 Free parking

The first feature of Hyper-V is core-and-socket parking. Hyper-V can monitor the use
of each core and CPU (which is in a socket on the motherboard) as a whole. Hyper-V
moves the processes around on the cores to consolidate the work to as few cores as
possible. Any cores not needed at that time are put into a low energy state. They can
come back online quickly if needed but consume much less power while they wait.

69The bare metal
 Hyper-V can do this at the socket level as well. If it notices that each CPU socket is
being used at only 10 percent of capacity, for example, it can condense the workload
to one socket and park the unused sockets, placing them in a low energy state. This
helps data centers use less power and require less cooling. In Azure, you have exclu-
sive access to your assigned CPU core. Hyper-V won’t condense your core with some-
one else’s. It will, however, turn off cores that aren’t in use.

3.7.2 A special blend of spices

The version of Hyper-V used by Azure is a special version that the team created by
removing anything they didn’t need. Their goal was to reduce the footprint of Hyper-
V as much as possible to make it faster and easier to manage. Because they knew
exactly the type of hardware and guest operating systems that will run on it, they could
rip out a lot of code. For example, they removed support for 32-bit hosts and guest
machines, support needed for other types of operating systems, and support for hard-
ware they weren’t supporting at all.

 Not stopping there, they further tuned the hypervisor scheduler for better perfor-
mance while working with cloud data-center workloads. They wanted the scheduler to
be more predictable in its use of resources and fairer to the different workloads that
were running, because each would be running at the same priority level. They also
enhanced Hyper-V to support a heavier I/O load on the VM bus.

3.7.3 Creating instances on the fly

When a new server is ready to be used, it’s booted. At this point, it’s a naked server
with a bare hard drive. You can see the steps involved in starting the server, adding an
instance to your service, and adding an additional server in figure 3.11.

Figure 3.11 The structure of a physical server and virtual instance servers in Azure. This figure
illustrates the process involved in starting the server (q and w). It also shows the process of
starting an instance and adding it to your service (e through y), and adding another virtual
server (u). All these steps are coordinated by the FC and take only a few minutes.

Host partition

Host-differencing
VHD

Server Core
VHD

Maintenance OS

Guest partition Guest partition Guest partition

Service 2
bits

Service 1
bits

Web
VHD

Worker
VHD

Guest-differencing
VHD

Guest-differencing
VHD

Service 3
bits

Worker
VHD

Guest-differencing
VHD

Enterprise
base VHD Server Core base VHD

Hypervisor

Physical Server Hardware
CPU, memory, disk, and network

70 CHAPTER 3 How Windows Azure works
During boot up, the server locates a maintenance OS on the network, using standard
Preboot Execution Environment (PXE) protocols. (PXE is a process for booting to an
operating system image that can be found on the network.) The server downloads the
image and boots to it (q in figure 3.11).

The maintenance OS connects with the FC and acts as an agent for the FC to execute
any local commands needed to prepare the disk and machine. The agent prepares the
local disk and streams down a Windows Server 2008 Server Core image to the local
disk w. This image is a virtual hard drive (VHD) and is a common file format used to
store the contents of hard drives for VMs. (VHDs are large files representing the com-
plete or partial hard drive for a VM.) The machine is then reconfigured to boot from
this core VHD. This image becomes the host OS that manages the machine and inter-
acts with the hypervisor. The host OS is Windows Server 2008 Core because almost all
but the most necessary modules have been removed from the operating system. You
might be running this in your own data center.

 The Azure team worked with the Windows Server team to develop the technology
needed to boot a machine natively from a VHD that’s stored on the local hard drive.
The Windows 7 team liked the feature so much that they added it to their product as
well. Being able to boot from a VHD is a key component of the Azure automation.

 After the machine has rebooted using the host OS image, the maintenance OS is
removed and the FC can start allocating resources from the machine to services that
need to be deployed. A base OS image is selected from the prepared image library
that’ll meet the needs of the service that’s being deployed e. This image (a VHD file)
is streamed down to the physical disk. The core OS VHDs are marked as read-only,
allowing multiple service instances to share a single image. A differencing VHD is
stacked on top of the read-only base OS VHD to allow for changes specific to that vir-
tual server r. Different services can have different base OS images, based on the ser-
vice model applied to that service.

 On top of the base OS image and attached to it is an application VHD that contains
additional requirements for your service t. The bits for your service are downloaded
to the application VHD y, and then the stack is booted. As it starts, the stack reports its
health to the FC. The FC then enrolls the stack into the service group, configuring the
VLAN assigned to your service and updating the load balancer, IP allocation, and DNS

The maintenance OS

The maintenance OS is based on Windows Preinstallation Environment (Windows PE).
It’s a thin OS that’s used by many IT organizations for low-level troubleshooting and
maintenance. The tools and protocols for Windows PE are available on any Windows
server and are used by a lot of companies to easily distribute machine images and
automate deployment.

71The bare metal
configuration. When this process is completed, the new node is ready to service
requests to your application.

 Much of the image deployment can be completed before the node is needed, cut-
ting down on the time it can take to start a new instance and add it to your service.

 Each server can contain several VMs. This allows for the optimal use of computing
resources and the flexibility to move instances around as needed. As a second or third
virtual server is added, it might use the base OS VHD that has already been down-
loaded u or it can download a different base OS VHD based on its needs. This second
machine then follows the same process of downloading the application VHD, booting
up, and enrolling into the cloud.

 All these steps are coordinated by the FC and are usually accomplished in a few
minutes.

3.7.4 Image is everything

If the key to the automation of Azure is Hyper-V, then the base VM images and their
management are the cornerstone. Images are centrally created, also in an automated
fashion, and stored in a library, ready to be deployed by the FC as needed.

 A variety of images are managed, allowing for the smallest footprint each role
might need. If a role doesn’t need IIS, then there’s an image that doesn’t have IIS
installed. This is an effort to shrink the size and runtime footprint of the image, but
also to reduce any possible attack surfaces or patching opportunities.

 All images are deployed using an Xcopy deployment model. This model keeps
deployment simple. If the FC relied on complex scripts and tools, then it would never
truly know what the state of each server would be and it would take a lot longer to
deploy an instance. Again, diversity is the devil in this environment.

 This same approach is used when deploying patches. When the OS needs to be
patched, Microsoft doesn’t download and execute the patch locally as you might on
your workstation at home. Doing so would lead to too much risk, having irregular
results on some of the machines. Instead, the patch is applied to an image and the
new image is stored in the library. The FC then plans a rollout of the upgrade, taking
into account the layout of the cloud and the update domains defined by the various
service models that are being managed.

 The updated image is copied in the background to all of the servers used by the
service. After the files have been staged to the local disk, which can take some time,
each update domain group is restarted in turn. In this way, the FC knows exactly what’s
on the server. The new image is merely wired up to the existing service bits that have
already been copied locally. The old image is kept locally for a period of time as an
escape hatch in case something goes wrong with the new image. If that happens, the
server is reconfigured to use the old image and rebooted, according to the update
domains in the service model. This process dramatically reduces the service window of
the servers, increasing uptime and reducing the cost of maintenance on the cloud.

72 CHAPTER 3 How Windows Azure works
 We’ve covered how images are used to manage the environment. Now we’re going
to explain what you can see when you look inside a running role instance.

3.8 The innards of the web role VM
Your first experience with roles in Azure is likely to be with the web role. To help you
develop your web applications more effectively, it’s worth looking in more detail at the
VM that your web role is hosted in. In this section, we’ll look at the following items:

� The details of the VM

� The hosting process of your web role (WaWebHost)
� The RDAgent process

3.8.1 Exploring the VM details

You can use the power of native
code execution to see some of the
juicy details about the VM that your
web role runs on. Figure 3.12
shows an ASP.NET web page that
shows some of the internal details,
including the machine name,
domain name, and the user name
that the code is running under.

 If you want, you can easily gen-
erate the web page shown in fig-
ure 3.12 by creating a simple
ASPX page with some labels that
represent the text, as follows:

<div>
 ProcessorCount:
 <asp:Label ID="lblProcessorCount" runat="server" />
 </div>

Finally, you can display the internal details of the VM using the code-behind in the fol-
lowing listing.

using System.Management;

public partial class _Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 // Initialize
 var computer = new Microsoft.VisualBasic.Devices.Computer();
 lblMachineName.Text = computer.Name;

Listing 3.1 Using code behind to display machine details

Figure 3.12 Using native code, you can see some of the
machine details of a web role in Windows Azure. In this
example, Microsoft is using Windows Server 2008
Enterprise x64. Notice that the user name that the process
is running as is a GUID.

Class fetches
information

about server

73The innards of the web role VM
 // OS Details
 lblOSName.Text = computer.Info.OSFullName;
 lblOSVersion.Text = computer.Info.OSVersion;
 lblMachineName.Text = computer.Name;

 // Computer System Details
 lblProcessorCount.Text =

 ➥ System.Environment.ProcessorCount.ToString();
 lblCLRVersion.Text = System.Environment.Version.ToString();
 lblCurrentDirectory.Text = GetCurrentDirectory();
 lblTimeSinceLastRestart.Text = GetTimeSinceLastRestart();
 lblDomainName.Text = System.Environment.UserDomainName;
 lblUserName.Text = System.Environment.UserName;
 lblCPUName.Text = GetCPUName();
 lblArchitecture.Text = GetArchitecture();
 }

 private string GetCurrentDirectory()
 {
 try
 {
 return System.Environment.CurrentDirectory;
 }
 catch
 {
 return "unavailable";
 }
 }

 private string GetTimeSinceLastRestart()
 {
 try
 {
 TimeSpan time = new TimeSpan(0, 0, 0, 0,

 ➥ System.Environment.TickCount);
 return time.ToString();
 }
 catch
 {
 return "unavailable";
 }
 }

 private string GetCPUName()
 {
 try
 {
 using (ManagementObject Mo = new

 ➥ ManagementObject("Win32_Processor.DeviceID='CPU0'"))
 {
 return (string)(Mo["Name"]);
 }
 }
 catch
 {
 return "unavailable";

Gets length of time
server has been running

Gets domain
name server

is running on

Gets user
name service
is running as

74 CHAPTER 3 How Windows Azure works
 }

 }

 private string GetArchitecture()
 {
 try
 {
 using (ManagementObject Mo = new

 ➥ ManagementObject("Win32_Processor.DeviceID='CPU0'"))
 {
 ushort result = (ushort)(Mo["Architecture"]);
 switch (result)
 {
 case 0:
 return "x86";
 case 9:
 return "x64";
 default:
 return "other";
 }
 }
 }
 catch
 {
 return "unavailable";
 }

 }
 }

You can now, of course, deploy your web page to Windows Azure and see the inner
details of your web role, which were shown in figure 3.12. These machine details pro-
vide you with some interesting facts:

� Web roles run on Windows 2008 Enterprise Edition x64
� They run quad core AMD processors and one core is assigned
� The domain name of the web role is CIS

� This VM has been running for an hour
� The Windows directory lives on the D:\ drive
� The web application lives on the E:\ drive

This is just the beginning; feel free to experiment and discover whatever information
you need to satisfy your curiosity about the internals of Windows Azure by using calls
similar to those shown in listing 3.1.

3.8.2 The process list

Now that we’re rummaging around the VM, it might be worth having a look at what
processes are actually running on the VM. To do that, you’ll build an ASP.NET web
page that’ll return all the processes in a pretty little grid, as shown in figure 3.13.

 To generate the list shown in figure 3.13, create a new web page in your web role
with a GridView component called processGridView:

75The innards of the web role VM
<asp:GridView ID="processGridView" runat="server"/>

Next, add a using System.Diagnostics statement at the top of the code-behind and
then add the following code to the Page_Load event:

var processes = Process.GetProcesses();

processGridView.DataSource = from process in processes
 orderby process.ProcessName
 select new
 {
 Name = process.ProcessName,
 Id = process.Id.ToString() };
 }
processGridView.DataBind();

This code will list all the processes on a server and bind the returned list to a GridView
on a web page, as displayed in figure 3.13. If you look at the process list displayed in
figure 3.13, you’ll see the two Windows Azure–specific services that we’re interested
in: WaWebHost and RDAgent.

 We’ll now spend the next couple of subtopics looking at these processes in more
detail.

3.8.3 The hosting process of your website (WaWebHost)

If you were to look at the process list for a live web role (shown in figure 3.13), or if
you were to fire up your web application in Windows Azure and click the Process tab,
you would notice that the typical IIS worker process (w3wp.exe) isn’t present when
your web server is running.

 You would also notice that if you stop your IIS server by issuing IISReset - stop,
your web server continues to run. You know from installing the Windows Azure SDK

Figure 3.13 The process list of a Windows Azure VM.
The RDAgent process is related to Red Dog, which was
the code name for Azure while it was being developed.

Gets list of
running processes

Uses LINQ
query to
streamline
data returned

Binds query result to
grid for screen output

76 CHAPTER 3 How Windows Azure works
that web roles are run under IIS 7.0. So, why can’t you see your roles in IIS, or restart
the server using IISReset?

HOSTABLE WEB CORE

Although Windows Azure uses IIS 7.0, it makes use of a new feature, called hostable web
core, which allows you to host the IIS runtime in-process. In the case of Windows Azure,
the WaWebHost process hosts the IIS 7.0 runtime. If you were to look at the process list
on the live server or on the development fabric, you would see that as you interact
with the web server, the utilization of this process changes.

WHY IS AZURE RUN IN-PROCESS RATHER THAN USING PLAIN OLD IIS?

The implementation of the web role is quite different from that of a normal web
server. Rather than using a system administrator to manage the running of the web
servers, the data center overlord—the FC—performs that task. The FC needs the abil-
ity to interact and report on the web roles in a consistent manner. Instead of attempt-
ing to use the Windows Management Instrumentation (WMI) routines of IIS, the
Windows Azure team opted for a custom Windows Communication Foundation
(WCF) approach.

 This custom in-process approach also allows your application instances to interact
with the WaWebHost processing using a custom API via the RoleEnvironment class. You
can read more about the RoleEnvironment class in chapter 4.

3.8.4 The health of your web role (RDAgent)

The RDAgent process collects the health status of the role and the following manage-
ment information on the VM:

� Server time
� Machine name
� Disk capacity
� OS version
� Memory
� Performance statistics (CPU usage, disk usage)

The role instance and the RDAgent process use named pipes to communicate with each
other. If the instance needs to notify the FC of its current state of health, notification is
communicated from the web role to the RDAgent process using the named pipe.

 All the information collected by the RDAgent process is ultimately made available
to the FC; it determines how to best run the data center. The FC uses the RDAgent pro-
cess as a proxy between itself, the VM, and the instance. If the FC decides to shut down
an instance, it instructs the RDAgent process to perform this task.

3.9 Summary
Hopefully, you’ve learned a little bit about how Azure is architected and how Microsoft
runs the cloud OS. You also know how data centers have changed over the generations

77Summary
of their development. Microsoft has spent billions of dollars and millions of work hours
building these data centers and the OS that runs them.

 Windows Azure truly is an operating system for the cloud, abstracting away the
details of the massive data centers, servers, networks, and other gear so you can simply
focus on your application. The FC controls what’s happening in the cloud and acts as
the kernel in the operating system. With the power of the FC and the massive data cen-
ters, you can define the structure of your system and dynamically scale it up or down
as needed. The infrastructure makes it easy to do rolling upgrades across your infra-
structure, leading to minimal downtime of your service.

 The service model that you define consists of the service definition and service
configuration files and describes, to the FC, how your application should be deployed
and managed. This model is the magic behind the data center automation. New con-
figuration settings are held in the ServiceDefinition.csdef and ServiceConfigura-
tion.cscfg files. Centralizing all your configuration file-reading code into one neat,
handy ConfigurationManager class is a real time saver.

 Fault and update domains describe how the group of servers running your applica-
tion should be separated to protect against failures and outages. Fault domains ensure
that your service is not tied to a single point of failure, which could be catastrophic to
your service. An update domain provides the ability to perform a rolling upgrade,
keeping you from having to take down your whole service to do an upgrade.

 When you need to upgrade your application, you can perform either a static
upgrade or a rolling upgrade, which you can do via the Azure portal. All you do is
choose a few options and click a button, or you can use the service management API.

 The automated nature of Azure is thanks to Hyper-V, Microsoft’s enterprise virtual-
ization solution. Hyper-V consolidates work to as few cores as possible by monitoring
the use of each core and CPU, all while maintaining a small footprint.

 In the next few chapters, we’ll work much more closely with the service runtime.
We’ll look at how you know when you’re running in the fabric, and the configuration
magic of the service model.

It’s time to run
with the service
In the last chapter we got into the guts of the infrastructure and architecture of
Windows Azure. During that chapter we introduced the concept of the service
model and how it’s used by the FC to manage your role.

 In this chapter we’ll take some time out to look at the parts of the service model
that we didn’t get to mess around with much (specifically the service definition and
service configuration files). But first, let’s spend a little time with the Service Man-
agement API.

4.1 Using the Windows Azure Service Management API
In both chapter 1 and chapter 2, you created a brand new Windows Azure web
role from scratch. As we pointed out then, a web role hosted by Windows Azure is

This chapter covers
� Interacting with Windows Azure via the

ServiceRuntime assembly

� Defining your Windows Azure role

� Configuring your Windows Azure role
78

79Using the Windows Azure Service Management API
a regular old ASP.NET web application with a little bit of extra magic that allows you to
interact with Windows Azure. That extra magic is three new assemblies that are auto-
matically added to your new web application when you create a new Windows Azure
Cloud Service project in Visual Studio. Figure 4.1 shows these assemblies listed in the
Visual Studio 2010 Solution Explorer.

 In this chapter we’ll focus only on the Microsoft.WindowsAzure.ServiceRuntime
assembly. We’ll look at Diagnostics in chapter 18, and the StorageClient in chap-
ters 9 through 12 and 16.

 The ServiceRuntime assembly acts as a bridge between the Windows Azure run-
time and your application. Although you don’t need to include the ServiceRuntime
assembly in your web role, you should. Without this assembly, your applications have
no way to interact with Windows Azure and make use of the APIs that it exposes to you.
This assembly provides the following helper routines that we’ll explore throughout
this chapter:

� Checking whether your application is running in the cloud
� Retrieving configuration settings
� Getting a reference to a file held in the local cache

This assembly provides some valuable methods that you’ll need to fully use the power
of Windows Azure. We’ll take a look at how you can include this assembly in your
projects.

4.1.1 Adding the ServiceRuntime assembly to your application

As you saw earlier, when you create a new ASP.NET web role in Visual Studio, the new
assemblies from the SDK are automatically referenced within your project. That’s
great if you’re creating a new role, but what if you’re migrating an existing ASP.NET
application to the cloud, or if you want to access the API from another assembly?

Figure 4.1 Three
assemblies to play with
in your new web role

80 CHAPTER 4 It’s time to run with the service
 The ASP.NET web role project created in Visual Studio is a normal ASP.NET web
application with three extra assembly references. If you need to migrate your existing
application (or use it in another project), you can always add those extra assemblies
via the Add Reference dialog box. You can find these assemblies in the c:\Program
Files\Windows Azure SDK\v1.1\ref\ directory.

 Now that you know how to reference the ServiceRuntime assembly, let’s take a
look at some of the API calls and how you can use them.

4.1.2 Is your application running in Windows Azure?

One of the static properties that the Service-
Runtime exposes via the RoleEnvironment

static class is the ability to check whether your
application is running in Windows Azure. You
can perform this check using the RoleEnvi-
ronment.IsAvailable property.

 To see this check in action, you’re going to
quickly create a web page that displays a label
that states whether your application is running
in Windows Azure. Figure 4.2 shows that web
page running in the development fabric.

 To create the web page shown in figure 4.2,
create a new cloud service solution called
ServiceRuntimeWeb with a new ASP.NET web role called ServiceRuntimeWebsite. In
the web project, modify the Default.aspx page to include the following label:

<asp:label id="runningInTheFabricLabel" runat="server"/>

After you’ve added this label to your web page and a using statement for the Service-
Runtime namespace, you can then display the result of the RoleEnvironment.
IsAvailable call in the contents of the label by adding the following code to the
Page_Load event:

runningInTheFabricLabel.Text = RoleEnvironment.IsAvailable ?
 "I am running in the fabric" : "Not in the fabric";

As you know, web roles are standard ASP.NET web applications; they can still be run on
a standard IIS web server (if you like retro computing). If you launched this page in IIS
(or the ASP.NET Web Development Server by selecting the ASP.NET project and press-
ing F5), then it would display the message Not in the fabric. If you were to now fire
up your web page in the Windows Azure development fabric, it would display I am
running in the fabric (as shown in figure 4.2).

 The RoleEnvironment.IsAvailable call is not only useful for announcing to the
world that your web application is in heaven (I mean in the cloud), but it’s also useful
for building applications (or libraries) that will be hosted both inside and outside Win-
dows Azure. Because most of Windows Azure’s APIs aren’t available outside Windows

Figure 4.2 A funky little web page that
tells you that you’re running in the fabric

81Defining your service
Azure, you might want to check that you’re running inside Windows Azure before
using one of these APIs. Later in this section we’ll look at some of these situations and
possible solutions that you can use when working with shared code.

 We’ve introduced you to the ServiceRuntime assembly. Now let’s take a look at
some of the other differences between a standard ASP.NET web application and a Win-
dows Azure ASP.NET web role.

4.2 Defining your service
In chapter 3, we spent quite a bit of time discussing the infrastructure and architec-
ture of Windows Azure. In that chapter, we introduced the concept of the service
model and how it comprises three elements: the service definition, the service config-
uration, and the operating model.

 In this section, we’ll look at the first piece of the service model puzzle, which is the
service definition file (we’ll look at some of the other stuff later on). In chapter 3, we
described how the FC uses the service definition file (ServiceDefinition.csdef) to manage
your service; in this chapter we’ll show you how you can effectively define your service.

 The following information is held in the service definition file:

� The number of required upgrade domains (see chapter 3)
� The endpoint of your service (port and protocol)
� Whether the role runs in partial or full trust
� Whether the role has any configuration settings
� The amount of local disk space that the role requires for local file storage
� The required size of the VM

In the following subsections, we’ll take a look at how you can define some of that
information. Before we do that, let’s return to the service definition file itself.

4.2.1 The format of the service definition file

When you created your Cloud Service project in chapter 1, the service definition file
was automatically added to your project. The following listing shows the service defini-
tion file for the ServiceRuntimeWeb project that you created in chapter 1.

<ServiceDefinition name="ServiceRuntimeWeb"
xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/
 ➥ ServiceDefinition">
 <WebRole name="ServiceRuntimeWebsite">
 <InputEndpoints>
 <InputEndpoint name="HttpIn" protocol="http" port="80" />
 </InputEndpoints>
 <ConfigurationSettings>
 <Setting name="DiagnosticsConnectionString" />
 </ConfigurationSettings>
 </WebRole>
</ServiceDefinition>

Listing 4.1 Service definition file of the ServiceRuntimeWeb project

Name of your
cloud project

Name of your web role

q
HTTP port and protocol

your application runs on

w
Any special configuration
elements you want

82 CHAPTER 4 It’s time to run with the service
As shown in listing 4.1, the service definition file adheres to the following format:

� Cloud project (ServiceDefinition element)
� Role definition (web role)

� Input endpoints q
� Internal endpoints (not shown in listing 4.1)
� Configuration settings w
� Certificates (not shown in listing 4.1)
� Local storage (not shown in listing 4.1)

Throughout the course of the next few sections we’ll explore the items that define
your role in more detail.

 Because your Cloud Service project contains only a single web role, you’ll see only
a single role definition in your service definition file. If your project contained multi-
ple roles, these roles would also be included in the file. The XML in the following list-
ing shows how this would be structured in the service definition file.

<?xml version="1.0" encoding="utf-8"?>
<ServiceDefinition name="ServiceRuntimeWeb" xmlns="http://

schemas.microsoft.com/ServiceHosting/
2008/10/ServiceDefinition">
 <WebRole name="ServiceRuntimeWebsite">

 </WebRole>
 <WorkerRole name="WorkerRole1">

 </WorkerRole>
</ServiceDefinition>

In this example, there are two roles in the project: a web role called ServiceRuntime-
Website and a worker role called WorkerRole1 (note that the definition of a worker
role is exactly the same as the configuration of a web role, except that the definition
element is called WorkerRole instead of WebRole).

 You have an idea of the structure of the service definition file, but what sort of
information describing your service would you put in that file?

4.2.2 Configuring the endpoint of your web role

If you look at the service definition file for your web role in listing 4.1, you’ll see that
the HTTP port and protocol that your application runs on is defined at q.

 Windows Azure allows web roles to receive incoming HTTP or HTTPS messages
(usually via port 80 and port 443 respectively) via your virtual IP address only (see chap-
ter 3). Any other traffic that’s sent to your virtual IP address is either filtered out by the
firewalls or is not forwarded to your web role from the load balancer. Figure 4.3 shows
the interaction between a client browser, the load balancer, and your web role. Worker
roles are not held to this protocol restriction. (We’ll cover worker roles in chapter 15.)

Listing 4.2 Configuring multiple roles in the service definition file

83Defining your service
 By locking down the available protocols,
Windows Azure reduces the surface area of
attack for your web role. Any incoming
requests to your web role (outside of the port
and protocol combinations defined in the ser-
vice definition) are filtered out by the firewalls
and load balancers; the request never reaches
the servers that your web role is hosted on.
This level of protection protects your web role
from port attacks, as well as from distributed
denial-of-service (DDoS) attacks.

 By default, Visual Studio correctly configures your web role to use HTTP and port
80 in your service definition file. (This configuration is shown at q in listing 4.1.)

<InputEndpoint name="HttpIn" protocol="http" port="80" />

If you wanted to expose your service via HTTPS, you would change the InputEndpoint
in the service definition file to the following:

<InputEndpoint name="HttpsIn" protocol="https" port="443" />

If you need to run your application in both HTTP and HTTPS, define two InputEnd-
point tags:

<InputEndpoints>
 <InputEndpoint name="HttpIn" protocol="http" port="80"/>
 <InputEndpoint name="HttpsIn" protocol="https" port="443"/>
</InputEndpoints>

You can configure other ports for the protocols as well (for example, you can define
an endpoint with the port 8080). You would usually configure other ports when there
are multiple web roles in the same solution. Such a configuration would allow each
web role to be accessed on a different port.

WHERE’S THE GUI?

If you’re currently thinking to yourself “I’ll never remember all that XML syntax,”
then good news: the service definition file has an XSD (XML Schema Definition lan-
guage) associated with it. You get full IntelliSense support when you edit this file in
Visual Studio. If you edit in Notepad, you don’t get the benefit of this support.

 Alternatively, if you feel that we’ve moved beyond text files and are in a Windows
Presentation Foundation (WPF) Minority Report-style GUI interface era, then you’ll be
pleased to hear that you can edit the service definition file by using a dialog box in
Visual Studio 2010. To open the dialog box, double-click the name of your web role in
the Roles folder of your Cloud Service project (for example, double-click Service-
RuntimeWebsite in the Roles folder in the ServiceRuntimeWeb cloud project, as
shown in figure 4.1).

 To modify the endpoints in the editor, select the Endpoints tab, shown in figure 4.4.

Web role

Load balancer

Browser

Figure 4.3 The
load balancer
protects the
galaxy (or at least
your web role)
from the threat of
invasion.

84 CHAPTER 4 It’s time to run with the service
There are several reasons why you might want to use a port other than port 80 or 443,
but for the most part, these are the traditional ports used with HTTP and HTTPS and
are considered best practices.

IGNORING BEST PRACTICES WHEN DEVELOPING

Although security best practices are great for production servers, they can be a real
pain to follow during development. We can all thank Ray Ozzie at Microsoft for mak-
ing this a little easier in the development fabric by allowing us to run our web roles on
any port.

 Figure 4.4 shows how you can easily set this value via the editor. Because we have an
XML fetish, let’s look at how it’s done in the service definition file. The following bit of
configuration shows how you can run your web role on port 87 over HTTP in the
development fabric:

<InputEndpoint name="HttpIn" protocol="http" port="87" />

The development fabric is pretty lenient when it comes to configuring available ports.
If a port is already taken (if IIS is hogging port 80), it gives you the next available port.
For example, if you asked for port 80, it would fire up your application on port 81
instead.

INTRAROLE COMMUNICATION

You might have noticed in figure 4.4 that there’s a little section called Internal End-
point (go on, look, if you didn’t see it already). If you need to host a web role internally
(you don’t want that web role to be available outside the Windows Azure fabric) but you
want to make that web role available to another role, this check box is for you. A typical
reason for wanting this functionality is that a web role or worker role is reliant on an
internal web service (as is the case with service-oriented-architecture-type applications).

Figure 4.4 If you don’t want
to use pure XML to configure
your endpoints, you can use
this GUI by double-clicking
the name of your web role in
the Roles folder of your Cloud
Service project.

85Defining your service
 You can configure the internal endpoint of this role by setting the name, port, and
protocol of the internal endpoint in this way:

<InternalEndpoint name="MyInternalRole" protocol="http"/>

Alternatively, you can use the editor, as shown in figure 4.4.
 It’s worth pointing out that web roles support only HTTP internal endpoints and

can’t be secured with certificates. You should use the HTTP protocol only for internal
endpoints that are legacy web services (old ASP.NET Web Services [ASMX] and the
like). If you’re considering using this approach for WCF services, you should host
your service with a worker role and expose it via TCP instead. TCP generally provides
better performance for internal services than does HTTP.

WORKER ROLE ENDPOINTS

Although the service definition file is a common file that’s used by both web roles and
worker roles, we’re going to look at only web roles in this chapter. We’ll leave the
examples on how to host worker roles that accept incoming requests across various
protocols and ports to later in the book.

 The configuration of a worker role uses the same InputEndpoint tag as the web
role. The following XML shows the endpoint for a worker role hosted on TCP port
10000:

<InputEndpoint name="MyEndpoint" protocol="tcp" port="10000" />

Figure 4.5 shows the GUI for configuring a worker role endpoint.
 You can use the editor shown in figure 4.5 to set internal endpoints. Remember,

internal endpoints are dynamically assigned ports and you can’t manually set the port
number. The following XML defines an internal endpoint called MyEndpoint that uses
TCP (rather than HTTP or HTTPS) as a protocol:

<InternalEndpoint name="MyEndpoint" protocol="tcp" />

As we said earlier, we intended to give only a brief description about how this configu-
ration applies to worker roles. We’ll return to this later on, but now we’re going to
take a little detour and examine other things you can do in the editor.

Figure 4.5 Setting a worker role to be hosted via TCP on port 10000 to the external world using the
Visual Studio GUI

86 CHAPTER 4 It’s time to run with the service
4.2.3 Configuring trust level, instances, and startup action

When you click the Configuration tab, you
see the options shown in figure 4.6.

 There are three sections on this page: .NET
Trust Level, Instances, and Startup Action.
We’ll be looking at these sections in more
detail later in the book, but for the moment
let’s have a quick introduction to them.

.NET TRUST LEVEL

Windows Azure supports two levels of trust:
full trust and partial trust. Partial trust is sim-
ilar to ASP.NET’s medium trust level. It
restricts the operations that your application
can perform to only those that it trusts.
Whenever possible, you should run your application in partial-trust mode because it
provides a greater level of security (I sleep like a baby at night whenever my applica-
tion is running under partial trust). If, however, you need to perform big scary actions
that would make a security freak’s skin crawl (such as C++, Reflection, or P/Invoke)
then you’ll need to set your application to full trust.

 Using the dialog box shown in figure 4.6 is probably the easiest way to set your
trust level, but because we all love messing with configuration files, let’s modify the
service definition file directly.

 To configure partial trust, set the enableNativeExecution attribute on your role
to false. For full trust, you can either set the attribute to true or not configure it at all
(full trust is the default level). The following XML shows how to set your earlier web
role to partial trust:

<WebRole name="ServiceRuntimeWebsite"
 enableNativeExecution="false">

In chapter 6, we’ll look in more detail at the supported trust levels. Now let’s move on
to the Instances section.

INSTANCES

The Instances section allows you to set the number of instances of your role and the size
of your VM (small, medium, large, or extra large). The number of instances is an impor-
tant setting, but because this setting is held in the service configuration file, we’re going
to save our discussion of it for chapter 6. Now it’s on to the Startup Action section.

STARTUP ACTION

The final section on the Configuration page is Startup Action. This section isn’t really
part of the service definition, but is instead a wee bit of Visual Studio configuration.
The following two check boxes are in this section:

� Launch browser for HTTP endpoint
� Launch browser for HTTPS endpoint

Figure 4.6 The Configuration tab for your role
in Visual Studio

87Defining your service
These check boxes tell Visual Studio which endpoints you want to launch in the devel-
opment environment when you press F5.

 That’s about it for what you can do on the Configuration page in the Visual Studio
editor. Let’s take a look now at the Local Storage page and find out how to configure
your local storage.

4.2.4 Configuring local storage

Local storage is a temporary filesystem storage area that’s made available to a role
instance to store and retrieve data locally. The local storage area is available only to a
single role instance and can’t be shared across multiple role instances.

 If the VM for your role instance dies and never recovers, you’ll lose the data stored
in this area forever. Only volatile data should be stored in this storage area; never store
any data that you might need to rely on later in a court of law. Any data that you store
in local storage should also be stored in a nonvolatile storage area such as a BLOB,
Table storage, or SQL Azure.

IF IT’S SO VOLATILE, WHY DO I NEED IT?

Although BLOBs, Table storage, and SQL Azure can be accessed by all instances of a
role, the convenience of centralized storage mechanisms comes at a cost: latency.
Those other, nonvolatile storage areas are all hosted on separate servers in another
part of the data center, whereas local storage is part of your VM. Because the disks are
hosted on the same server as your VM, local storage is much faster than the other stor-
age mechanisms.

BLOBs, Table storage, and SQL Azure are suitable for most scenarios, but if you’re
processing high volumes of data, you might want to use local storage to temporarily
cache that data. Let’s look at how to set that up.

SETTING UP LOCAL STORAGE

As always, there are two ways to configure local storage. You can either do it manually
via the service definition file, or you can use the role editor in Visual Studio 2010 and
let it modify the service definition file for you. Figure 4.7 shows the GUI for configur-
ing local storage in Visual Studio.

 When you define a local storage resource, you can define the following three items:

� The name of the resource
� The amount of space required, in megabytes
� Whether you want the temporary data deleted when the role is recycled

Figure 4.7 Configuring
some temporary local
storage space in your role
using Visual Studio 2010

88 CHAPTER 4 It’s time to run with the service
The maximum amount of local storage that you can use for a single role instance is 20
GB. If you need more than 20 GB of temporary storage space, you might want to
rethink the architecture of your application.

 The information that you supply in the editor is reflected in the service definition
file, as shown in the following listing.

<WebRole name="ServiceRuntimeWebsite">
 <LocalResources>
 <LocalStorage name="MyStorage"
 cleanOnRoleRecycle="true"
 sizeInMB="100" />
 <LocalStorage name="MoreStorage"
 cleanOnRoleRecycle="false"
 sizeInMB="50" />
 </LocalResources>
</WebRole>

In the current version of Windows Azure, you can’t dynamically change this setting at
runtime, which is why this code lives in the service definition file and not in the ser-
vice configuration file. If you incorrectly size your temporary storage area and need to
request a larger size, you have to redeploy your application. Why is that?

 The FC uses the requested size of local storage as part of its algorithm to decide
which physical servers will host your VM. If the FC allowed you to modify the local stor-
age dynamically without a redeployment, it might not be able to satisfy your request
with the servers that are currently hosting your role instances (there might be too
many other roles hosted on that server that have high local storage requirements). By
forcing a redeployment of the application, the FC can safely redeploy your role
instances to the servers that most appropriately satisfy your request.

 Now that you know how to set up local storage, let’s take a quick look at how to use
it in your application.

USING LOCAL STORAGE

If you need to be able to use local storage in your role (web or worker), then you can
make a request to retrieve information about your role using the RoleEnvironment
class in the ServiceRuntime. Use the following call to request information about your
local storage resource.

LocalResource myStorage =
 RoleEnvironment.GetLocalResource("myStorage");

You need to call RoleEnvironment.GetLocalResource, passing in the name of the
local storage resource that you defined earlier (myStorage). The object returned by
GetLocalResource exposes three properties (Name, MaximumSizeInMegabytes, and
RootPath). The Name and MaximumSizeInMegabytes properties return the informa-
tion that you set in the service definition file:

string name = myStorage.Name;
int maxSizeInMB = myStorage.MaximumSizeInMegabytes;

Listing 4.3 Configuring local storage in the service definition file

89Defining your service
The RootPath property returns the physical path of the folder where your temporary
storage area has been assigned. Using the RootPath property, you can use standard
.NET methods to store and retrieve data in this folder. The following code creates a
text file called HelloWorld.txt that contains the text “Goodbye World”.

System.IO.File.WriteAllText(myStorage.RootPath + "HelloWorld.txt",
 "Goodbye World");

It’s pretty simple to use local storage. It’s built on all the existing system.I/O classes
that we all know and love.

 Before we leave the subject of local storage, we want to cover one final thing: the
Clean on Role Recycle setting.

RECYCLING A ROLE

Use the Clean on Role Recycle setting to indicate whether you want to lose or keep
your local storage data if one of the following things occurs:

� An upgrade (you deploy a new version or an OS patch is applied)
� A fault (the server dies)
� You request that the role be recycled

It’s pretty hard to test how your application responds to losing your temporary data as
part of an upgrade or a fault, but you can manually request that your roles be recycled.
All you need to do is call the RequestRecycle method in the RoleEnvironment class:

RoleEnvironment.RequestRecycle();

This call not only allows you to test that your application handles local storage cor-
rectly when your role instance is recycled; it also allows you to test whether the rest of
your application behaves gracefully.

 If your application needs to know when a role instance is stopping (because it’s
cleaning up resources, notifying a monitor, or performing some other such task), you
can always use the RoleEnvironment.Stopping event:

public class WebRole : RoleEntryPoint
{
 public override bool OnStart()
 {
 DiagnosticMonitor.Start("DiagnosticsConnectionString");

 RoleEnvironment.Stopping += new
 EventHandler<RoleEnvironmentStoppingEventArgs>
(RoleEnvironment_Stopping);

 return base.OnStart();
 }

 void RoleEnvironment_Stopping(object sender,
RoleEnvironmentStoppingEventArgs e)

 {
 Trace.WriteLine("Stopping");
 }
}

90 CHAPTER 4 It’s time to run with the service
You can easily stick any cleanup code that you need in the event handler for this event.
When this handler is called, your code has only 30 seconds to respond. This time limit
protects Windows Azure from sloppy tear-down code or freezes in the cleanup pro-
cess. This limit is similar to the limit local Windows services face when they’re told to
stop by the user or the OS.

 You now know almost everything you need to know about local storage. We’ll
revisit this topic in part 4, when we show how you can use this in combination with
BLOBs and how local storage can help you when you’re building massively scalable
worker processes built on MapReduce.

 Now let’s turn our attention to the tabs in the role editor that we haven’t covered
yet. So far we’ve looked at the Configuration, Endpoints, and Local Storage tabs. That
leaves the Certificates and Settings tabs. When we looked at configuring endpoints, we
discussed HTTPS but we didn’t mention how to configure the SSL certificate for your
site. Let’s return to that subject and look at certificate management in Windows Azure.

4.3 Setting up certificates in Windows Azure
We want to look at how to generate, add, and configure certificates in Azure. Let’s
look at how to generate one first; then we’ll cover how to add and configure them.
Certificates are widely used to encrypt, and thereby protect, data as it travels over the
network. In this section, when we refer to certificates, we mean the type you’ll use for
HTTPS/SSL or for your own encryption needs. We’re not referring to the manage-
ment certificates we’ll cover in chapter 18.

4.3.1 Generating a certificate

For live production applications you should use a purchased certificate from a trusted
authority. If you’re just experimenting or testing an application, you can use a test cer-
tificate. Because you’ve already bought this lovely book, we’ll save your wallet from
more troubles and show you how to generate a test certificate that you can use on the
production or development fabric.

 To generate a test X.509 certificate, you can use a tool called makecert, which is
included with both Visual Studio and the .NET Framework. To start using the tool, fire
up an instance of the Visual Studio command prompt as an administrator. Using the
command prompt, you can generate a test certificate with the following command:

makecert -r -pe -a sha1
-n "CN=Windows Azure Authentication Certificate"
-ss My -len 2048
-sp "Microsoft Enhanced RSA and AES Cryptographic Provider"
-sy 24 MyCertificate.cer

This command generates a test X.509 certificate called MyCertficate.cer, and stores it
in the CurrentUser/Personal store. You’ll need to use the certificate management
tool in Windows to export it as a PFX-formatted certificate, which is suitable for use in
Windows Azure. For more details about the makecert tool, you can always visit the fol-
lowing URL: http://msdn.microsoft.com/en-us/library/bfsktky3(VS.80).aspx.

http://msdn.microsoft.com/en-us/library/bfsktky3(VS.80).aspx

91Setting up certificates in Windows Azure
With your brand new certificate in hand, you can install the certificate in both the pro-
duction fabric and the development fabric.

4.3.2 Adding certificates

The production fabric and the development fabric both have different methods of
managing certificates. Let’s look at how to add certificates on the live system first.

ADDING CERTIFICATES TO THE PRODUCTION FABRIC

As you might expect, you manage certificates via the Azure portal. Select your hosted
service in the portal, and then click Manage in the Certificates section. You’ll see the
window shown in figure 4.8.

 If you need to install your certificate using your own code, you can use the man-
agement APIs. We won’t cover how to do this in this book because it’s not a typical sce-
nario for most folks. If you’re automatically installing lots of websites, then using your
own code could be useful; the rest of you should use the portal.

ADDING CERTIFICATES TO THE DEVELOPMENT FABRIC

If you need to test HTTPS in your development fabric, you’ll need the appropriate cer-
tificate on your development machine. To upload your certificate into the develop-
ment fabric, click the Certificates tab in the role editor, as shown in figure 4.9.

 You can set the name, location (LocalMachine, CurrentUser), store name (My,
Root, CA, Trust), and the certificate.

Figure 4.8 To
install a certificate
using the Windows
Azure portal, select
the certificate and
click Upload. It’s
that easy.

Figure 4.9 Adding certificates to the development fabric

92 CHAPTER 4 It’s time to run with the service
To set the certificate, you can
either enter the thumbprint
manually or select a certifi-
cate from your personal
store. If you click the button
in the Thumbprint cell, the
Select a Certificate dialog box
opens (already armed with
the test certificate that you
generated earlier), as shown
in figure 4.10.

 Now that you’ve selected
your certificate, you might be
wondering how this is
reflected in the service definition file. Don’t worry. Your XML-obsessed authors are
here to help you out. The following listing shows how the certificate is represented.

<WebRole name="ServiceRuntimeWebsite">
 <InputEndpoints>
 <InputEndpoint name="HttpsIn" protocol="https" port="443" />
 </InputEndpoints>
 <Certificates>
 <Certificate name="MyCertificate"
 storeLocation="LocalMachine"
 storeName="My" />
 </Certificates>
</WebRole>

Everything that you set in figure 4.9 is present in the service definition file, except for
the thumbprint, which is stored in the service configuration file. The thumbprint is a
configurable setting, not a definable attribute of the service; that’s why it’s in the con-
figuration file. We’re going to talk more about the thumbprint in chapter 5; now let’s
use that new certificate.

4.3.3 Configuring your HTTPS endpoint to use the certificate

The last thing you need to do is to configure your endpoint to use the new certificate.
With your certificate installed, you can either use the SSL Certificate drop-down menu
shown in figure 4.4 (which is now populated with your test certificate) to configure
the endpoint, or you can manually configure it in the service definition file. To config-
ure the endpoint manually, set the certificate attribute of the InputEndpoint element
to the name of your certificate:

<InputEndpoint name="HttpsIn" protocol="https" port="443"
 certificate="MyCertificate"/>

Listing 4.4 Adding a certificate to the service definition file

Figure 4.10 The Select a Certificate dialog box shows the
certificates you’ve already generated. This example shows the
certificate you generated earlier with makecert.

Same information
shown in figure 4.9

93Summary
If you expose a worker role externally using an InputEndpoint element, you can also
secure that service with a certificate. You manage and configure certificates for a
worker role in the same way as you do a web role.

4.4 Summary
It’s probably a good time to stop and review where we’ve been. In this chapter, you’ve
taken everything that you’ve learned about how Windows Azure works (from chapter
3) and started to define how you want your application to run in the environment.

 We talked about the ServiceRuntime assembly and how you can use that to inter-
act with Windows Azure. This assembly provides several APIs that can help you to get
the most out of Windows Azure. You can use the ServiceRuntime assembly to deter-
mine whether your application is up and running in Azure.

 Next, we examined the service definition file, which defines your service. The
information in this file instructs the FC about how to manage your application. In this
file, you configure the endpoint of your web role, the trust level you want to use, your
instances, your local storage, and the certificates you’ll use. We showed how you can
do all this using either the Visual Studio editor or by putting the information directly
into the file in XML.

 In the next chapter you’ll take what you’ve learned about defining your service
and configure it to work in Windows Azure.

Configuring your service
In the previous chapter, we concentrated on how you define your role using the
service definition file. We’ll now look at the second part of the service model pic-
ture: the service configuration file.

5.1 Working with the service configuration file
In chapter 4, we described how the service definition file (ServiceDefinition.csdef)
describes your role and how it’s used by the Fabric Controller (FC) to effectively
manage your role. You learned that if you need to change any of the settings in
your service definition file, you also need to redeploy your role.

 You can change some other settings without redeploying your role. You can
even change some of your settings dynamically without restarting the role (surely

This chapter covers
� Understanding the service configuration file

� Handling configuration at runtime

� Handling non-application settings, based on
configuration

� Sharing configuration between Azure and non-
Azure applications
94

95Working with the service configuration file
not; because we develop on Microsoft products, we love a good restart). These
dynamic settings are typically stored in the service configuration file (ServiceConfigura-
tion.cscfg).

 In the service configuration file, you can dynamically configure standard Windows
Azure runtime settings (the number of role instances and the certificate thumbprint)
and your own custom settings. Let’s see how you configure this information and how
you can dynamically modify these settings at runtime.

5.1.1 The format of the service configuration file

Let’s now take a look at the standard service configuration file that Visual Studio creates
when you create a web role. The following listing shows the service configuration file
that was generated when you created your ServiceRuntimeWeb project in chapter 1.

<?xml version="1.0"?>
<ServiceConfiguration serviceName="ServiceRuntimeWeb"
xmlns="http://schemas.microsoft.com/ServiceHosting/
➥ 2008/10/ServiceConfiguration">
 <Role name="ServiceRuntimeWebsite">
 <Instances count="1"/>
 <ConfigurationSettings>
 <Setting name="DiagnosticsConnectionString"
 ➥ value="UseDevelopmentStorage=true"/>
 </ConfigurationSettings>
 </Role>
</ServiceConfiguration>

Before you start thinking, “Oh no, not another XML file,” don’t worry; you can config-
ure everything you see in this file in the Visual Studio editor. It’s useful to understand
the structure of this file, because it’ll help you understand which settings are dynamic.
You might find yourself editing this file in the Azure portal where there isn’t a nice
GUI, just a plain old text editor. Also, if things go wrong, you might need to recover
the file with Notepad.

 As shown in listing 5.1, the service configuration file adheres to the following format:

� Cloud project (ServiceConfiguration element)
� Role definition

� Instances
� Configuration settings
� Certificates

Because your Cloud Service project contains only a single web role, only one role def-
inition appears in your service configuration file. The same was true for the service
definition file. If your project contained multiple roles, then these would also appear

Listing 5.1 Service configuration file of the ServiceRuntimeWeb project

Same name as
cloud project

Same name
as web role

96 CHAPTER 5 Configuring your service
in the file. The following XML shows how multiple roles would be structured in the
service configuration file:

<ServiceConfiguration serviceName="ServiceRuntimeWeb" xmlns="http://
schemas.microsoft.com/ServiceHosting/

 ➥ 2008/10/ServiceConfiguration">
 <Role name="ServiceRuntimeWebsite">
 …
 </Role>
 <Role name="WorkerRole1">
 …
 </Role>
</ServiceConfiguration>

The XML shows two roles in this project: a web role called ServiceRuntimeWebsite
and a worker role called WorkerRole1 (remember, the configuration of a worker role
is exactly the same as the configuration of a web role).

 You have a pretty good idea of how the service configuration file is structured; let’s
look at how you can configure some of the standard settings.

5.1.2 Configuring standard settings

As of the PDC 2009 release, there are only two types of standard settings that you can
configure in Windows Azure:

� The number of instances of your role
� The certificate thumbprint

All other settings are custom settings (which we’ll look at in the next section).

NUMBER OF INSTANCES

We’re now going to briefly look at the most important piece of configuration in Win-
dows Azure: the number of instances that your role has. The following XML defines
five instances of your role:

<Role name="ServiceRuntimeWebsite">
 <Instances count="5"/>
</Role>

If you need to increase the number of instances required for your web role, you can
modify this value in your service configuration file. During development, you can also
modify this value using the Configuration tab in the Visual Studio GUI.

 If you’re currently wondering why this setting is in the service configuration file
and not in the service definition file, the answer is quite simple. This setting doesn’t
define the service (the service hasn’t changed); you just want more instances of it. By
storing this setting in the service configuration file, you can scale the number of ser-
vices up and down dynamically without having to redeploy your application (after all,
no code has changed). Later on in this section we’ll look at how you can modify the
service configuration file at runtime via the Azure portal.

 Now let’s return to a topic that we had parked earlier: certificates.

97Working with the service configuration file
CERTIFICATES

We talked about certificates in chapter 4. To recap, in that section, we showed you how
to do the following:

� Generate a test certificate
� Install a certificate into the development fabric and production fabric
� Associate a certificate with your HTTPS endpoint

When you installed your certificate in the development fabric, you saw that it stored
the following XML in your service definition:

<WebRole name="ServiceRuntimeWebsite">
 <InputEndpoints>
 <InputEndpoint name="HttpsIn" protocol="https" port="443" />
 </InputEndpoints>
 <Certificates>
 <Certificate name="MyCertificate"
 storeLocation="LocalMachine"
 storeName="My" />
 </Certificates>
</WebRole>

If we return to the Certificates page in Visual Studio (as shown in figure 4.9), the
thumbprint shown there isn’t present in the service definition file. That’s because this
value is stored in the service configuration file, as shown below:

<?xml version="1.0"?>
<ServiceConfiguration serviceName="ServiceRuntimeWeb" xmlns="http://

schemas.microsoft.com/ServiceHosting/
 ➥ 2008/10/ServiceConfiguration">
 <Role name="ServiceRuntimeWebsite">
 <Instances count="1"/>
 <Certificates>
 <Certificate name="Certificate1"

thumbprint="E6AE81BB1E818D04BE3EBBE09E8A4B4EB42D5B73"
 ➥ thumbprintAlgorithm="sha1" />
 </Certificates>
 </Role>
</ServiceConfiguration>

Why is certificate information split across two configuration files (service definition
and service configuration)? Think about the intention of this functionality. The defi-
nition of your role is as follows: the web role ServiceRunTimeWebsite is hosted on
port 443 using the protocol HTTPS and it requires a certificate called MyCertificate,
which you’ve uploaded.

 In reality, certificates aren’t a fixed entity. You might want to use a test certificate in
the staging environment but use your production certificate only in the production
environment. Certificates expire, and you might need to change your certificate over
time. For these reasons, the certificate associated with your service is dynamic and
configurable, which is why the thumbprint lives in the service configuration file. Do
you really want to redeploy your application to change certificates when you switch
your application from staging to production?

98 CHAPTER 5 Configuring your service
 What’s the thumbprint used for? The name of the certificate in the service defini-
tion file (MyCertificate, the one you typed in Visual Studio) is internal to Windows
Azure. This name isn’t tied back to the name of the certificate that you generated ear-
lier. You need to be able to retrieve the correct certificate from the store, and the
thumbprint is that search parameter. Windows Azure uses the FindByThumbprint
functionality built into Windows to retrieve the actual certificate.

 If you have a production certificate from a trusted authority that you can’t install in
your development environment and you need to configure that in Windows Azure via
the portal, then you can always manually configure the certificate in the service con-
figuration file using the thumbprint.

 We’ve covered the standard configuration settings. Let’s look at how you configure
your own custom settings.

5.1.3 Configuring runtime settings

As with any other application, when you’re working with web or worker roles you need
to be able to dynamically configure runtime settings without rebuilding the applica-
tion from its source. In conventional web applications, the following settings (among
others) are typically stored in configuration files:

� Database connection strings
� Service endpoints
� Filesystem paths
� Timeout settings

Although these configuration settings are considered dynamic, in most applications
they’re rarely changed. The main reason for storing these runtime configuration set-
tings in a configuration file is so that you can easily deploy your application between
different environments (development, test, staging, and production). Typically, your
production environment talks to different web services, a different database, or a dif-
ferent storage account from your development or staging environment. Using config-
uration files (rather than rebuilding your source code) to modify these endpoints
greatly reduces the complexity, increases the maintainability, and simplifies the
deployment process of your application.

 In this section we’ll look at the following aspects of configuring your runtime
settings:

� Configuring runtime settings in conventional web apps
� Defining your runtime configuration settings in Windows Azure
� Initially configuring your runtime configuration settings
� Reading your configuration settings
� Modifying your configuration settings dynamically at runtime

Before we look at how to define your runtime configuration settings in Windows
Azure, let’s look at how you would do this in conventional ASP.NET web applications.

99Working with the service configuration file
CONFIGURING RUNTIME SETTINGS IN
CONVENTIONAL ASP.NET WEB APPLICATIONS

In conventional ASP.NET web applications,
you typically store any configurable run-
time settings in the web.config file. Win-
dows Azure provides the ability to read
application settings from web.config (as
we’ll now demonstrate), but this isn’t the
method that you should use to read the
configuration settings.

 You’re going to build a small web page
that’ll read and display a setting from the
appSettings section of web.config. Then
you’re going to modify this page in future
sections of this chapter to use the Windows
Azure configuration settings functionality.
Figure 5.1 shows the output of the web page
that you’re going to create. The text “Hello
Birds Hello Trees” is read from web.config.

 In your ASP.NET web project, add a new ASP.NET web page called Configuration-
Settings.aspx that you’ll use to develop the page shown in figure 5.1. Next, add the fol-
lowing label to the page:

<asp:label id="mySettingLbl" runat="server"/>

The text “Hello Birds Hello Trees” that you’ll display in the label mySettingLbl is
stored in the appSettings section of web.config. In the web.config file for your web
application, replace the appSettings tag with the following:

<appSettings>
 <add key="mySetting" value="Hello Birds Hello Trees"/>
</appSettings>

Add a using System.Configuration line to the top of your code. Then, on the
Page_Load event of the ConfigurationSettings.aspx page, add the following code to
display the contents of the mySetting application setting:

 mySettingLbl.Text = ConfigurationManager.AppSettings["mySetting"];

If you were to now run this application in the Web Development Server, IIS, the devel-
opment fabric, or on the live Windows Azure production fabric, the application would
run correctly and display the page shown in figure 5.1.

ISSUES WITH USING WEB.CONFIG

Although Windows Azure can read anything stored in the appSettings section of
your web.config file, it doesn’t provide you with the ability to modify these settings at
runtime. If you need to modify a value in your web.config file, then Windows Azure
requires you to redeploy your entire application.

Figure 5.1 Displaying configuration settings
in a web page. This text is being read from the
appSettings section of the web.config file.
Because you can’t modify this text without
redeploying your application, a better place to
store it is in the ServiceDefinition.csdef file.

http://myservice.com/services/timeservice.svc

100 CHAPTER 5 Configuring your service
 In conventional web applications, you would need to modify web.config for each
instance if you wanted to change runtime settings. Unfortunately, this approach isn’t
scalable beyond a single server. If you need to modify 100 instances of a web applica-
tion, dealing with each individual web.config file is likely to be slow and cause syn-
chronization issues. In such a scenario, you’ll need to store the configuration settings
centrally and then distribute the changes to each instance. It makes sense to remove
the configuration settings from web.config (after all, there’s more than just applica-
tion settings in that file) and provide a new mechanism to feed runtime settings. Let’s
see how this is done.

SETTING CONFIGURATION IN THE SERVICE DEFINITION

Any configuration settings that your application uses must be defined first in the service
definition file (ServiceDefinition.csdef). To display the message “Hello Birds Hello
Trees” in your web page, you need to define a new setting in the service definition file.
Add the name of the new setting (mySetting) to the ConfigurationSettings section
of the file. The following configuration shows how the ConfigurationSettings section
should look:

<ConfigurationSettings>
 <Setting name="mySetting"/>
 <Setting name=”DiagnosticsConnectionString”/>
</ConfigurationSettings>

Now the service definition file looks like what’s shown in the following listing.

<?xml version="1.0" encoding="utf-8"?>
<ServiceDefinition name="ServiceRuntimeWeb"

xmlns="http://schemas.microsoft.com/ServiceHosting/
 ➥ 2008/10/ServiceDefinition">
 <WebRole name="ServiceRuntimeWebsite">
 <InputEndpoints>
 <InputEndpoint name="HttpIn" protocol="http" port="80" />
 </InputEndpoints>
 <ConfigurationSettings>
 <Setting name="mySetting"/>
 <Setting name="DiagnosticsConnectionString"
 value="UseDevelopmentStorage=true" />

 </ConfigurationSettings>
 </WebRole>
</ServiceDefinition>

Notice that in the service definition file, you specify only the name of the setting; you
don’t set the configured value at this point.

SETTING YOUR CONFIGURATION VALUE IN THE SERVICE CONFIGURATION FILE

After you define the configuration settings in the service definition file that’ll be used
by your application, you need to set the actual value of the setting that’ll be used by

Listing 5.2 Adding a new setting to the service definition file for your project

101Working with the service configuration file
the website. The configuration settings are stored in the ServiceConfiguration.cscfg
file in your Cloud Service project.

 To set your runtime configuration setting, make a copy of the configuration setting
in the service definition file and paste it into the service configuration file. Then add a
new attribute called value that you can set to your default runtime value. The follow-
ing code shows how your new setting should look:

<Setting name="mySetting" value="Hello Birds Hello Trees"/>

Now your ServiceConfiguration.cscfg file should look like what’s shown in the follow-
ing listing.

<?xml version="1.0"?>
<ServiceConfiguration serviceName="ServiceRuntimeWeb"
➥ xmlns="http://schemas.microsoft.com/ServiceHosting/
➥ 2008/10/ServiceConfiguration">
 <Role name="ServiceRuntimeWebsite">
 <Instances count="1"/>
 <ConfigurationSettings>
 <Setting name="mySetting" value="Hello Birds Hello Trees"/>
 <Setting name="DiagnosticsConnectionString"
 value="UseDevelopmentStorage=true" />

 </ConfigurationSettings>
 </Role>
</ServiceConfiguration>

You’ve set up your ServiceConfiguration.cscfg file and the ConfigurationSettings
section in the ServiceDefinition.csd file to contain your runtime configuration set-
tings. Now you need to modify your application to use the Windows Azure Service
Runtime to read the configuration data.

READING THE CONFIGURATION SETTING

You can access the runtime values of the configuration setting by using the RoleEnvi-
ronment static class that you used earlier. To retrieve the value of a configuration set-
ting, you can use the following method:

RoleEnvironment.GetConfigurationSettingValue(SettingName);

To modify your existing web page to read the configuration setting from the Windows
Azure configuration settings file rather than from the web.config file, add a using
statement for Microsoft.WindowsAzure.ServiceRuntime at the top of your code and
change the code-behind of your website to the following:

 mySettingLbl.Text =
 RoleEnvironment.GetConfigurationSettingValue("mySetting");

Now you can run the CloudService project to see the value displayed in your web
page, as shown in figure 5.1.

Listing 5.3 Adding a new setting to the service configuration file for your project

102 CHAPTER 5 Configuring your service
5.2 Handling configuration at runtime
Congratulations! You understand the service configuration file and how to read those
configuration settings. Now let’s modify these configuration settings at runtime and
find out how to track changes when they occur.

5.2.1 Modifying configuration settings in the Azure portal

You can modify the values that you set in the service configuration file dynamically at
runtime by using the Azure portal. First, though, you have to redeploy your applica-
tion. If you need a little help, skip back to chapter 2 and review that information.

 After your application is redeployed and running in the fabric, you can easily mod-
ify any of your configuration settings. Select either the production or staging version
of the role, and then click Configure. You’re redirected to the page shown in figure
5.2, in which you can modify the runtime config-
uration settings for the role that you selected.

 The Azure portal doesn’t have any fancy edi-
tors; all you see is a big text box with your service
configuration file in it. Bet you’re glad you paid
attention during XML school now.

 The Azure portal lets you directly edit the con-
tents of the configuration settings or upload a new
version of the service configuration file. After you
apply your changes, they’re instantly replicated to
all instances of your web role; in some cases you
don’t have to restart any of the roles.

 Figure 5.3 shows that you’ve modified the
configuration setting mySetting from “Hello
Birds Hello Trees” to “Hello Birds”.

Figure 5.3 Your web page showing a
configuration setting that you modified
via the Azure portal

Figure 5.2 Modifying
configuration settings
in the Azure portal

103Handling configuration at runtime
Wow, modifying your configuration settings is easily achieved through the Azure por-
tal. What’s even cooler is that your role can pick up and run with the changes without
needing a restart. The only issue is that you might need to store a local copy of the
previous setting whenever that setting changes. Let’s see how to do that.

5.2.2 Tracking service configuration changes

When you change a configuration setting, Windows Azure raises two events that your
application can handle:

� RoleEnvironment.Changing—Fires before the changes to the setting are
applied. You can still read the existing setting before the change is applied.

� RoleEnvironment.Changed—Fires after the changes to the setting are applied.
You might use this event to set up a new shared resource after a cleanup of a
shared resource.

To hook up and define one of these events, you can use the code shown in the follow-
ing listing.

 public class WebRole : RoleEntryPoint
 {
 public override bool OnStart()
 {
 DiagnosticMonitor.Start("DiagnosticsConnectionString");

 RoleEnvironment.Changing += RoleEnvironmentChanging;

 return base.OnStart();
 }

 private void RoleEnvironmentChanging
 ➥ (object sender, RoleEnvironmentChangingEventArgs e)
 {
 if (e.Changes.Any(change => change is
 ➥ RoleEnvironmentConfigurationSettingChange))
 {
 Trace.WriteLine("Configuration Setting Changed");

 // Set e.Cancel to true to restart this role instance
 e.Cancel = true;
 }
 }
 }

So far we’ve had a good look at how to use the ConfigurationSettings functionality
in Windows Azure. The problem is that the ConfigurationSettings section of the
service configuration file is only a replacement for the data that you would normally
store in the appSettings section of the web.config file. How do you handle other
types of configuration data?

Listing 5.4 Tracking changes to the service configuration

104 CHAPTER 5 Configuring your service
5.3 Configuring non-application settings
In this section we’ll take a look at when you would use the service configuration file
and when you would use regular old application settings to set up configuration
data. We’re going to look specifically at where you should store the following kinds
of information:

� Database connection strings
� Application build configuration
� Tweakable configuration
� Endpoint configuration

5.3.1 Database connection strings

For database connection strings (such as SQL Azure DB), you might have different
development, staging, and production connection strings. In standard ASP.NET web
applications, you would store the connection string in the connectionStrings ele-
ment of the web.config file. Like appSettings, Windows Azure doesn’t provide you
with the ability to change data stored in the connectionStrings element at runtime.
You can, however, treat a connection string like an application setting and store it in
the service configuration. Using configuration settings allows you to modify the con-
nection string at runtime via the Azure portal.

5.3.2 Application build configuration

Some configuration data can be tweaked on an individual server via web.config but is
never different between various deployments. This configuration should remain in
web.config and be treated as part of the application build rather than as a runtime set-
ting. Typical examples include the httpModules and httpHandlers sections of
web.config.

5.3.3 Tweakable configuration

It can be useful to tweak some configuration settings when an unexpected issue comes
up, without redeploying the application. For example, a user might upload a file that’s
larger than you originally configured the web server to handle. In this case, you might
decide to modify the maximum HTTP request size in web.config to allow larger files to
upload. The following configuration shows this web.config setting:

<httpRuntime maxRequestLength="1048576"/>

In a conventional production environment, you would probably test this change on a
staging environment and then roll out the change to the live environment without
redeploying the entire application. Typically, this change would be reflected in source
control so that all future builds would have the new settings.

 The web.config file you’re used to editing at runtime to change behavior is read-
only in the cloud. Because you can’t change the web.config file dynamically in Win-
dows Azure, you would have to redeploy the full application in the Azure portal to

105Developing a common code base
deploy a changed web.config file. Instead, you can move these configuration elements
to the cloud service definition. Then you can update the settings during runtime
through the portal. This might cause a restart of your instances (in a controlled
upgrade-style manner), but you aren’t deploying new code.

5.3.4 Endpoint configuration

Let’s say you have an ASP.NET web page that communicates via WCF to an external WCF
service. You might have a different endpoint that you communicate with between the
development, production, and staging systems. How can you configure your applica-
tions hosted by Windows Azure to use external endpoints, such as WCF services?

 The following extract from web.config represents the WCF configuration for a typ-
ical WCF client proxy (in this example, we’ve omitted the binding configuration).

<client>
 <endpoint address="http://myservice.com/services/timeservice.svc"
 binding="basicHttpBinding"
 bindingConfiguration="BasicHttpBinding_ITimeService"
 contract="TimeService.ITimeService"
 name="BasicHttpBinding_ITimeService" />
</client>

Because you can’t modify this information in the Windows Azure portal, you can’t
change the endpoint between staging and production without redeploying the appli-
cation. What you can do though is extract the information that can change dynami-
cally (in this case, http://myservice.com/services/timeservice.svc) and store it
in the service configuration file, leaving all the other configuration as it is (accepting
that if that needs to change it will require a redeploy). You can then modify the end-
point in a WCF proxy by modifying the endpoint address on the proxy:

var timeServiceProxy = new TimeServiceClient();

Uri timeServiceEndpointAddress =
 new

Uri(RoleEnvironment.GetConfigurationSettingValue("timeServiceEndpoint"))
;

timeServiceProxy.Endpoint.Address =
 new EndpointAddress(timeServiceEndpointAddress);

You’re doing well so far. You know all about how to configure your own custom run-
time settings and how to modify them at runtime. You can configure an ASP.NET web
application to work in Windows Azure and you’re familiar with the sorts of things you
can and can’t do in Windows Azure with regard to configuration. Now let’s revisit how
you can develop an application that’ll work in both environments.

5.4 Developing a common code base
Because you’ve just seen how configuration settings are dramatically different between
Windows Azure and standard ASP.NET, let’s talk about how to develop a unified system

106 CHAPTER 5 Configuring your service
that’ll work in both environments. Typically, there are two situations in which you might
want to use a common code base for configuration settings:

� You have a common library shared across multiple projects.
� There are two versions of your web application (a cloud version and an on-

premises version).

To successfully share configuration settings across Windows Azure applications and
applications not running in the cloud, abstract your configuration settings so they can
be read either directly from the web.config or app.config file, or via the RoleEnviron-
ment class. You can implement this in one of two ways: use the RoleEnviron-
ment.IsAvailable property or the configuration settings inversion of control
container. Let’s examine each of these implementations.

5.4.1 Using the RoleEnvironment.IsAvailable property

Unfortunately, if you attempt to access configuration settings outside the Windows
Azure fabric using the RoleEnvironment.GetConfigurationSettingValue method, a
very large, nasty exception will be thrown. The reason is that the GetConfiguration-
SettingValue method is a Windows Azure–only method that isn’t supported in stan-
dard .NET applications.

 You can get around this issue by performing a check to see whether you’re run-
ning in Azure using the RoleEnvironment.IsAvailable property, as shown in the fol-
lowing code:

public static string GetSetting(string settingName)
{
 if (RoleEnvironment.IsAvailable)
 {
 return RoleEnvironment.GetConfigurationSettingValue(settingName);
 }
 else
 {
 return ConfigurationManager.AppSettings[settingName];
 }
}

This is probably the simplest method of sharing configuration settings that span
across applications that are hosted by Windows Azure and applications that aren’t.

 In the example code, the GetSetting method checks whether the ASP.NET web
application is running in the fabric using the RoleEnvironment.IsAvailable prop-
erty. If the application is hosted in Windows Azure (development fabric or live sys-
tem), then it uses the RoleEnvironment class to retrieve the configuration setting;
otherwise, it uses the standard method of retrieving a setting from appSettings.

 Although the previous example is a simple one, using this method will ensure that
your non-Windows Azure applications will reference Windows Azure assemblies even
though your applications aren’t running in the Windows Azure environment. One
final thing to remember: your common libraries and any versions of your applications

107Developing a common code base
that aren’t running in the cloud need to reference the Microsoft.WindowsAzure.
ServiceRuntime assembly.

5.4.2 Pluggable configuration settings using inversion of control

If you want to keep your application layers clean, consider using the inversion of control
(IoC) pattern. The IoC pattern is pluggable architecture that allows you to decouple
the execution of an operation from its implementation. Call GetSetting in a com-
mon layer and let the application figure out the implementation to use (appSettings
or RoleEnvironment), as appropriate. In the following four sections we’ll use the Unity
Application Block, or Unity (which is part of Microsoft Enterprise Library 4.1) to imple-
ment this pattern, but you can use any IoC framework.

DEFINING YOUR CONFIGURATION SETTINGS INTERFACE

To support a pluggable architecture you need an interface that both the RoleEnvi-
ronment and appSettings versions of your ConfigurationSettings classes can
access, such as the following:

public interface IConfigurationSettings
{
 string GetSetting(string settingName);
}

This interface exposes a single method that will accept the name of the setting to
retrieve and return the value of the setting.

IMPLEMENTING YOUR INTERFACE IN STANDARD WEB APPLICATIONS

Now that you’ve got your interface, you can implement that interface to return the
setting value from the appSettings section of the web.config or app.config file using
the following code:

public class AppConfigConfiguratonSettings : IConfigurationSettings
{
 public string GetSetting(string settingName)
 {
 return ConfigurationManager.AppSettings[settingName];
 }
}

The class above implements IConfigurationSettings and uses System.Configura-
tion.ConfigurationManager to return the setting value. The AppConfigConfigura-
tionSettings class should ideally be located in the same assembly as the interface
and both IConfigurationSettings and AppConfigConfigurationSettings should
be located in a common assembly that all your applications can access.

IMPLEMENTING YOUR INTERFACE IN WINDOWS AZURE WEB ROLES

Finally, you need to provide an implementation of IConfigurationSettings that can
be used to retrieve the configuration settings from the service configuration file via
RoleEnvironment:

public class RoleEnvironmentConfigurationSettings : IConfigurationSettings
{

108 CHAPTER 5 Configuring your service
 public string GetSetting(string settingName)
 {
 return RoleEnvironment.GetConfigurationSettingValue(settingName);
 }
}

This class can be provided in a separate assembly that’s not included with non-Win-
dows Azure instances of your web application and that’s not referenced by any of the
common layers. As you can see from this implementation, the common layers have no
references to any of the Windows Azure SDK assemblies.

CALLING THE CORRECT IMPLEMENTATION

Now that you’ve defined your pluggable classes, how do you call the correct imple-
mentation of the interface? Using the Unity implementation of IoC, reference the
Unity assembly (Microsoft.Practices.Unity.dll) from your common assembly and add
the following namespaces:

using Microsoft.Practices.Unity;
using Microsoft.Practices.Unity.Configuration;
using Microsoft.Practices.Unity.StaticFactory;

Then, when you need to retrieve a configuration setting in your application, you call
the following code:

 IUnityContainer myContainer = new UnityContainer();

 IConfigurationSettings configurationSettings =
 myContainer.Resolve<IConfigurationSettings>();

 configurationSettings.GetSetting("mySetting");

When you call the Resolve method, that method determines which configuration set-
tings provider is registered, and returns an instance of that class. Then you can
retrieve the configuration setting from the registered provider (appSettings version
or RoleEnvironment version) using the interface method GetSetting.

 Finally, if you want a class to use the appSettings version in your applications that
aren’t hosted by Windows Azure, register it using the following code:

 IUnityContainer myContainer = new UnityContainer();

 myContainer.RegisterType<IConfigurationSettings,
 AppConfigConfiguratonSettings>();

Using Unity

Download Unity from Microsoft’s Patterns and Practices group as part of Enterprise Lib-
rary 4, Enterprise Library 5, or stand-alone. See http://unity.codeplex.com/ for details.

Unity isn’t the only implementation of IoC available; it just happens to be the one
used in this example. For more information about Unity or IoC, go to http://msdn.
microsoft.com/en-us/library/ff647202(v=pandp.10.aspx.

http://msdn.microsoft.com/en-us/library/ff647202(v=pandp.10.aspx

109The RoleEnvironment class and callbacks
To register the Windows Azure version, you could call the following code instead from
your application:

 IUnityContainer myContainer = new UnityContainer();

 myContainer.RegisterType<IConfigurationSettings,
 RoleEnvironmentConfigurationSettings>();

Unity supports both configuration via code, which is what you see above, and via con-
figuration files. You could easily determine which IConfigurationSettings to load
using the RoleEnvironment.IsAvailable method to tell you whether the code was
running in the fabric, or you could extract which version to load into a configuration
file. Using the configuration file allows you to be a little more flexible by having one
configuration file for on-premises and one for the cloud.

 Now you know how to share your data across Windows Azure and other applica-
tions by using the RoleEnvironment class to interact with the Windows Azure runtime.
We think it might be interesting to rip away some of the covers and look at how this
interaction happens.

5.5 The RoleEnvironment class and callbacks
The RoleEnvironment class is hosted by the Microsoft.WindowsAzure.ServiceRun-
time assembly, which is provided as part of the Windows Azure SDK. On startup of
your application, the WaWebHost service attempts to call RoleEnvironment.Initial-
ize on any hosted web role application. This call populates a singleton instance of the
RoleEnvironment class (private static variable called at runtime), which is used by
static wrapper methods such as GetConfigurationSettingValue and IsAvailable.

 When the RoleEnvironment class
initializes, a callback is created between
the RoleHost and the RoleEnvironment
runtime instance. If any configuration
changes are made on the Azure portal
and propagated to the VM, the Role-
Host invokes the callback and notifies
the web role that some configuration has changed. This callback mechanism is cre-
ated across a named pipe. Figure 5.4 shows the communication between your applica-
tion and the role host.

 If the application isn’t running in the fabric, then the Initialize method is never
called; the singleton instance is null. RoleEnvironment.IsAvailable checks whether
that singleton object is null.

 So what happens under the hood when RoleEnvironment.GetConfiguration-
SettingValue is called? The GetConfigurationSettingValue static method is calling
GetConfigurationSettings on an instance of InteropRoleManager to retrieve the
value. Any changes to the configuration are propagated via a callback over the
named pipe. In this way, any configuration settings can be retrieved quickly from an

WaWebHost

Your ASP.NET website application

Named pipe
net.pipe://localhost/<RoleInstanceName>/asp.net

Figure 5.4 Named-pipe communication between
the web role host and the service runtime

110 CHAPTER 5 Configuring your service
in-memory copy of the configuration settings that were populated as part of the
AcceptConfigurationChanges callback.

5.6 Summary
In this chapter, we looked at the final piece of the service model puzzle, configura-
tion. You should now fully understand the service model of Windows Azure and be
able to effectively define and configure your service inside and outside Windows
Azure. With this knowledge, you should understand the effect of the service model
and how it applies to your application.

 The service configuration file (ServiceConfiguration.cscfg) stores your dynamic
configuration settings. You can change the settings in this file without redeploying
your role. You configure the most important piece of information in Windows Azure,
the number of instances for your role, in this file. We also looked at configuring certif-
icate information and how to dynamically change these settings at runtime.

 Comparing conventional ASP.NET applications with Windows Azure applications is
a good way to think about how to define, configure, and dynamically modify your run-
time configuration settings. Using its ConfigurationSettings functionality, Windows
Azure can read application settings from the web.config file. A better way to read
those settings is to use the RoleEnvironment class.

 Sharing code between applications running in Windows Azure and other applica-
tions not running in the cloud is just a matter of using the RoleEnvironment.GetCon-
figurationSettingValue method to share your configuration settings. Alternatively,
you can use the IoC pattern to achieve the same outcome.

 We explained the internals of the RoleEnvironment class as exposed via the
ServiceRuntime class. The RoleEnvironment.IsAvailable class works in both Azure
and non-Azure environments, but you can’t use the class RoleEnvironment.GetCon-
figurationSettingValue outside Azure (because there’s no named-pipe interface in
a non-Azure environment). There’s no performance hit involved when you use the
RoleEnvironment class because all data is cached in memory.

 With all your newly gained knowledge, it’s time to move on. We’re going to
enlighten you as to the mysteries and wonders of web roles.

Part 3

Running your site
with web roles

By now, you should know that Azure supports two types of server templates,
called roles. This part dives super deep into web roles.

 Chapter 6 discusses how to scale your web roles for performance reasons.
Chapter 7 shows you how to run non-.NET code, like PHP, Ruby, Java, and so on.
We also uncover all sorts of code dark magic, like spawning processes and
threads, and calling native code.

Scaling web roles
One of the coolest things about Windows Azure is that you can dynamically scale
your application. Whenever you need more computing power, you can just ask for
it and get it (as long as you can afford it). The downside is that in order to harness
such power, you need to design your application correctly. In this chapter, we’ll
look at what happens when your application is under pressure and how you can use
Windows Azure to effectively scale your web application.

6.1 What happens to your web server under extreme load?
Back in chapter 1, we talked about the challenges of handling and predicting
growth for typical websites. In this section, we want to show you what happens to a
web server when it’s under extreme load and how it handles itself. Using the Ashton

This chapter covers
� What happens to your web server under

extreme load

� Scaling your web role

� The load balancer

� Session management

� Caching
113

114 CHAPTER 6 Scaling web roles
Kutcher example from chapter 1, what would happen to your web server if Ashton
Kutcher twittered about your little Hawaiian Shirt Shop and you suddenly found thou-
sands of users trying to access your website at the same time?

 In an ideal world, if your website (or service) reached its maximum operating capac-
ity, all other requests would be queued and the application could handle the load at a
graceful, yet throttled, rate. In the real world, your website is likely to explode into a
ball of flames because the web server will continue to attempt to process all requests
(regardless of the rate at which they occur). The processing time of the requests will
increase, which results in a longer response time to the client. Eventually, the server will
become flooded with requests and it won’t be able to service those requests anymore.
The server is effectively rendered useless until the requests reduce in volume.

 In this section, we’ll look at how a web server performs both under normal and
extreme load by doing the following:

� Building a sample application that can run under extreme load
� Building an application that can simulate extreme load on your web server
� Looking at how your sample application responds when the server is under load
� Increasing the ability to process requests by

scaling up or out

To do all this you need to build a small ASP.NET
web page sample application that you can use in all
these scenarios.

6.1.1 Web server under normal load

The web page that you’re about to build will per-
form an AJAX poll that returns the time a request
was made. Under normal operation, the page
should return the current server time every 5 sec-
onds. Figure 6.1 shows this AJAX web page ade-
quately handling the load during normal operation.

 Let’s take a look at how you can build this web
page. The following listing gives the code for the
ASP.NET AJAX web poll shown in figure 6.1.

<asp:ScriptManager ID="ScriptManager1" runat="server" />
<asp:UpdatePanel ID="RequestsPanel" runat="server"
 UpdateMode="Always">
 <ContentTemplate>
 <asp:Timer ID="Timer1" runat="server"
 Interval="5000" OnTick="Timer1_Tick" />
 <asp:Label ID="resultLabel" runat="server" />
 </ContentTemplate>
</asp:UpdatePanel>

Listing 6.1 AJAX poll web form

Figure 6.1 An ASP.NET web page
making an AJAX request and returning
the server time every 5 seconds

Normal AJAX panel
makes easy
screen updates

q

w Timer refreshes
the panel

e
Label contains
date output

115What happens to your web server under extreme load?
At q is a standard ASP.NET AJAX update panel that contains a timer w, which is set to
poll the web server every 5 seconds. When the timer expires, the resultLabel e is
concatenated with the current date and time using the following code:

protected void Timer1_Tick(object sender, EventArgs e)
{
 resultLabel.Text += DateTime.Now.ToString() + "
";
}

So far, everything is fine and dandy. Let’s now try to simulate what would happen if
your server came under extreme load.

6.1.2 Simulating extreme load

To simulate extreme load, you’re going to build a web page that will put your server
on an extreme diet (you’re going to starve it). You’ll build an ASP.NET web form that
will send the current thread to sleep for 10 seconds. If you then make enough
requests to your web server, you should starve the thread pool, making your website
behave like a server under extreme load.

THE LONG-RUNNING WEB PAGE

The following code shows the markup for your empty ASP.NET page:

<form id="form1" runat="server">
 <div>There is no need for any code in this sample</div>
</form>

This code is for a simple web page; you don’t need your web page to display anything
exciting. You just need the code-behind for your page to simulate a long-running
request by sending the current thread to sleep for 10 seconds, as shown below:

protected void Page_Load(object sender, EventArgs e)
{
 Thread.Sleep(10000);
}

Now that you have a web page that simulates long-running requests, you need to put
your web server under extreme load by hammering it with requests.

HAMMERING YOUR LONG-RUNNING WEB PAGE WITH LOTS OF REQUESTS

To simulate lots of users accessing your website, create a new console application
that will spawn 100 threads. Each thread will make 30 asynchronous calls to your
new web page.

NOTE Your mileage might vary! You might need to increase the number of
threads or calls to effectively hammer the web server.

The following listing shows the code for the console application.

static void Main(string[] args)
{

Listing 6.2 Console application code for simulating extreme load

116 CHAPTER 6 Scaling web roles
 Console.WriteLine("Creating 100 threads");
 var webAddress =
 new Uri("http://localhost:49399/Monitoring/CPUThrash.aspx");
for (int i = 0; i < 100; i++)
{
 var t1 = new System.Threading.Thread
 (() =>
 {
 for (int j = 0; j < 30; j++)
 {
 WebClient client = new WebClient();
 client.DownloadStringAsync(webAddress);
 }
 }
);

 t1.Start();
}

Console.ReadKey();
}

In listing 6.2, you define the URI of your long-running web page at q. Then you iter-
ate through a loop 100 times, creating a new thread at w, which you’ll spawn at r.
You’ll spawn 100 threads.

 Each thread will execute the code defined at w within the lambda expression.
This thread will loop 30 times, making an asynchronous request to the web page at e.
In the end, you should be making around 300 simultaneous requests to your website.
How is the web server going to perform?

6.1.3 How the web server responds under extreme load

In figure 6.1, you saw the response time
of a simple AJAX website being polled
every 5 seconds under normal load. In
that example, there were no real issues
and the page was served up with ease.

 Figure 6.2 shows that same web appli-
cation, this time coughing and splutter-
ing as it struggles to cope with the
simulated extreme load. The extreme
load that this page is suffering from is
the result of running your console appli-
cation (listing 6.2) at the same time as
your polling application.

 Figure 6.2 shows that your polling
web page is no longer consistently taking
5 seconds to return a result. At one point (between 18:40:33 and 18:41:04), it took
more than 20 seconds to return the result. This type of response is typical of a web

Defines
the URI

q

w
Defines
the thread

e
Calls
the page

r
Spawns
the thread

Figure 6.2 AJAX poll under extreme load (running
at the same time as your console application)

117What happens to your web server under extreme load?
server under extreme load. Because the web server is under extreme load, it attempts
to service all requests at once until it’s so loaded that it can’t effectively service any
requests. What you need to do now is scale out your application.

6.1.4 Handling increased requests by scaling up or out

If you’re hitting the limits of a single instance, then you should consider hosting your
website across multiple instances for those busy periods (you can always scale back
down when you’re not busy). Let’s take a quick look at how you can do that manually
in Windows Azure.

SCALING OUT

By default, a Windows Azure web role is configured to run in a single instance. If you
want to manually set the number of instances that your web role is configured to run on,
set the instances count value in your service configuration file in the following way:

 <WebRole name="MyWebRole"
 <Instances count="1" />
 <ConfigurationSettings />
 </WebRole>

This configuration shows that your web role is configured to run in a single instance.
If you need to increase the number of active web roles to two, you could just modify
that value from 1 to 2:

<Instances count="2" />

Because the number of instances that a web role should run on is stored in the service
configuration file, you can modify the configured value via the Azure Service portal at
runtime. For more information about how to modify the service configuration file at
runtime, see chapter 5.

Scaling out automatically

If you don’t fancy increasing your web role instances manually, but you want to take
advantage of the ability to increase and decrease the number of instances depending
on the load, you can do this automatically by using Windows Azure APIs.

You can use the diagnostics API to monitor the number of requests, CPU usage, and
so on. Then, if you hit a threshold, use the service management APIs to increase the
number of instances of your web role.

Alternatively, you could increase or decrease the number of instances, based on the
time of day, using a model derived from your web logs. For example, you could run
one instance between 3:00 a.m. and 4:00 a.m., but run four instances between 7:00
p.m. and 9:00 p.m. To use this kind of schedule, you create a Windows Scheduler
job to call the service management API at those times.

In chapter 15, we’ll look at how you can automatically scale worker roles. The tech-
niques used in that chapter also apply to scaling web roles.

118 CHAPTER 6 Scaling web roles
You’ve increased the number of instances that host your web role. Now, if you were to
rerun your AJAX polling sample and your console application, you would see your
polling application responding every 5 seconds as if it were under normal load (rather
than taking 30 seconds or so to respond).

 Scaling out your web role is great if you designed your application to use this
method, but what if you didn’t think that far ahead? Well, then, you can scale it up.

SCALING UP

Uh-oh. You didn’t design your application to scale out. Maybe your application has an
affinity to a particular instance of a web role (it uses in-process sessions, in-memory
caches, or the like); in that case, you might not be able to scale out your web role
instance. What you can do is run your web application on a bigger box by modifying
the vmsize value in the service definition file:

<WebRole name="MyWebRole" vmsize="Medium">

By default, the web role is hosted on a small VM that has 1 GB of memory and one CPU
core. In the example above, you’ve upgraded your web role to run under a medium
VM, which means that your web role has an extra CPU core and more memory. For full
details about the available VM sizes, see chapter 3, section 3.4.4.

 By increasing the size of the VM, your ASP.NET AJAX web polling application
should be able to handle the extreme load being placed on the server (or at least pro-
cess requests a little quicker).

Now you understand what happens when your server is placed under extreme load
and how to effectively handle that situation by scaling your application. What you
need to know now is how requests are distributed across multiple web role instances
via the load balancer.

6.2 How the load balancer distributes requests
In this section, we’ll look at how the load balancer distributes requests across multiple
servers and how it reacts under failover conditions. In the end, you’ll understand how
your application will react and behave when you use multiple instances of your web role.

Try to avoid scaling up and scale out instead

Although scaling up will get you out a hole, it’s not an effective long-term strategy.
Wherever possible, you should scale out rather than up. At the end of the day, when
you scale up, you can only scale up to the largest VM size (and no further). Even that
might not be enough for your most extreme needs.

Also, it’s not easy to dynamically scale your application up and down, based on load.
Scaling out requires only a change to the service configuration file. Scaling up requires
you to upgrade your application (because it requires a change to the service definition
file).

119How the load balancer distributes requests
 We’re going to look at two load balancers: the development fabric load balancer
and the production load balancer. Before we do that, you’re going to build a sample
application to demonstrate the effects of the load balancer coordinating requests
between multiple servers.

6.2.1 Multi-instance sample application

The sample application that you’re about to build is a web page that consists of a label
that displays the name of the web server that processed the request, and a button that
posts back to the server when it’s clicked. Every time the page is loaded (either on first
load or when the button is clicked), the page writes a message to the diagnostic log.
Figure 6.3 shows the web page and its log output in the development fabric.

 Now we’ll walk you through the steps of creating this simple web role so that you’ll
be able to be able to see the kind of output shown in figure 6.3.

CREATE THE WEB PAGE

To build the sample application shown in figure 6.3, create a new ASP.NET web role (if
you’re unsure how to do this, refer to chapter 1). In the web role project that you just
created, add a new ASP.NET web page called MultipleInstances.aspx.

 Before you can run this web page, you must enable native execution in your service
definition file in your Cloud Service project:

<WebRole name="MyWebRole"
 enableNativeCodeExecution="true">

THE ASPX MARKUP

Now that you’ve added the page, add the following markup in MultipleInstances.aspx:

<div>
 Machine Name: <asp:Label ID="lblMachineName" runat="server" />
</div>

<asp:Button ID="btnClickMe" runat="server" Text="Click Me"/>

Figure 6.3 A single instance of your web role running in the development fabric, writing out
to the diagnostic log

120 CHAPTER 6 Scaling web roles
This code represents the page displayed in figure 6.3. There’s a label that displays the
name of the machine and a button that will post back to the web server when it’s clicked.

THE CODE-BEHIND

If you look at figure 6.3, you can see that each time the page is loaded, the name of
the web server that processed the request is displayed. To display the web server name
that’s in the lblMachineName label, add the following code to the Page_Load event of
the ASP.NET page:

var computer = new Microsoft.VisualBasic.Devices.Computer();
lblMachineName.Text = Environment.MachineName;

Finally, in order to write some data to the log as shown in figure 6.3, you need to write
a message to the log on page load. Add the following code to the Page_Load event of
the ASP.NET page:

System.Diagnostics.Trace.WriteLine("Hello Log");

Now, fire up the application in the development fabric. You’ll see a message written to
the log displayed in the development fabric UI every time the page is loaded.

 Great! You’ve got your application working. Now let’s go back and take a look at
how the load balancers route requests.

6.2.2 The development fabric load balancer

In typical ASP.NET web farms, it’s not easy to simulate the load balancing of requests.
With Windows Azure, a development version of the load balancer is provided so you
can simulate the effects of the real load balancer. The development fabric load bal-
ancer helps you find and debug any potential issues that you might have in your devel-
opment environment (yep, there’s a debugger, too). So let’s take a look at how the
development fabric load balancer behaves.

 If you were to fire up your web application in the development fabric with two web
roles configured, you would notice two instances of your web role displayed in the UI.
Similar to the live production system, the development fabric distributes requests
between the instances of your web role. Each time someone clicks the button on the
web page, the request is distributed to one of the web role instances. Figure 6.4 shows
the two instances of the web role in the development fabric UI.

 You can see two instances of your web role in the development fabric, but how is
this represented on your development machine?

MULTIPLE INSTANCES OF WAWEBHOST.EXE

In chapter 4, you discovered that Windows Azure hosts the IIS 7.0 runtime in-process in
the WaWebHost.exe process using the Hostable Web Core feature of IIS 7.0 rather than
using the default w3wp.exe process. Because your web application is hosted by the
WaWebHost.exe process, multiple instances of WaWebHost.exe are instantiated if you
increase the number of instances of your web role that need to be hosted (one process

121How the load balancer distributes requests
per instance is instantiated). Figure 6.5 shows the process list of a development
machine when it’s running multiple instances of the web role.

 In figure 6.5 there are two instances of WaWebHost in the Processes list, one per web
role instance.

Figure 6.4 Multiple instances of the web role in the development fabric

Figure 6.5 Multiple instances of WaWebHost shown in the Processes list

122 CHAPTER 6 Scaling web roles
TESTING WITH MULTIPLE BROWSER INSTANCES

When you’re testing your application in the development fabric to see how it
responds when requests occur across multiple instances, you should check that your
requests haven’t just been processed by a single instance of the process.

 In the development fabric, the load balancer tends to favor a particular instance
(per browser request) unless that role is under load. If you look at figure 6.4, you’ll
see that although there are two instances of your web role running, the development
load balancer seems to be routing all traffic to a single instance.

 Because each browser window in the development fabric tends to have affinity with
a particular web role instance, you should test your application using multiple browser
instances. Figure 6.6 shows the outcome of a test in which both instances of the web role
are being used by alternately clicking the button in two different browser instances.

Development fabric load balancer process

To help simulate the live production environment, the Windows Azure SDK includes a
development load balancer that’s used to simulate the hardware load balancers that
run in the Windows Azure data centers. Without the development fabric load balancer,
it would be difficult to simulate issues that occur across multiple requests (you can’t
attach a debugger in the live production environment, but you can in the development
environment).

The process that simulates the load balancer in the development fabric is called
DFLoadBalancer.exe, which is shown in figure 6.5. All HTTP requests that you make in
the development fabric are sent to this process first and then distributed to the ap-
propriate WaWebHost instance of the web role.

If you were to kill one of the WaWebHost instances, then all requests made to the de-
velopment fabric load balancer would be redistributed to the other instance of WaWeb-
Host; the other WaWebHost process would be automatically restarted. By performing
this test, you can simulate what will happen to your application if there’s a hardware
or software failure in the live environment.

If you were to kill your DFLoadBalancer.exe process, the entire development fabric on
your machine would be shut down and would require restarting.

Figure 6.6 Multiple
instances of the web
role with requests
distributed

123How the load balancer distributes requests
Now that two different web pages are running, the requests are distributed across
both instances of the development fabric.

 Although spinning up multiple instances of your web application with multiple
browser instances will allow you to test, in your development fabric, that your applica-
tion will work with multiple roles, it won’t test the effects of requests being redistributed
to another server. To test that your application behaves as expected in your develop-
ment fabric when running multiple instances, there are two things that you can do: you
can restart one of the WaWebHost instances, or you can test your application under load.

RESTARTING THE WAWEBHOST INSTANCE

Although the development fabric load balancer creates affinity between your process
and an instance of WaWebHost, if you kill that WaWebHost instance, the affinity is bro-
ken. When the affinity is broken, the request is redistributed to another instance of
WaWebHost, which creates a new affinity between the web browser and that instance of
the web role. Figure 6.7 shows the changing of affinity between a browser and a web
role instance when a WaWebHost.exe process is killed.

 In the example shown in figure 6.7, two instances of the web role are running
(instance 0 and instance 1), and there’s a single web browser. Instance 1 didn’t pro-
cess any requests prior to the restarting of the WaWebHost.exe process of instance 0;
the browser had affinity with instance 0. When instance 0 was restarted, instance 1
then processed all incoming requests and instance 0 no longer processed any requests
from the browser because a new affinity was created.

 This test is fairly important for you to perform in the development fabric. Restart-
ing one of your WaWebHost instances helps to ensure that your application can truly
run against multiple instances of your web role and can recover from a disaster. We’ll
look at these situations in more detail when we look at session, cache, and local stor-
age later in this chapter.

TESTING UNDER LOAD

The second way to test that your application behaves correctly when it’s redistributed
to multiple instances is to test your application under load. The best method of testing

Figure 6.7 Changing of affinity between browser and web role host in the development fabric

124 CHAPTER 6 Scaling web roles
this scenario is to use a load testing tool such as Visual Studio Team System Web Load
Tester. If you want to ensure that the development fabric load balancer redistributes
requests under load, you can simulate this by modifying the sample application that
you built earlier. Now, you’re going to simulate load by sending the thread to sleep for
10 seconds on page load. You can do this by modifying your Page_Load event to
include the following code:

Thread.Sleep(10000);

If you were to now spin up multiple instances of your web page, you would see that as
the result of the increase in load, the development fabric load balancer doesn’t main-
tain affinity and starts redistributing the requests more evenly.

Now that you have an understanding of how the development fabric load balancer
behaves and how you can effectively test how your application will behave in failover
situations, let’s look at how things happen in the live environment.

6.2.3 Load balancing in the live environment

We’ve spent quite a bit of time looking at the development fabric load balancer. Hope-
fully you have a good understanding of how the load balancer works and how it inter-
acts with multiple instances of your web role. Although the development fabric load
balancer doesn’t behave exactly like the load balancer in the real environment, there
are some tricks that you can do to ensure that your application will behave correctly in
the live environment. That said, there are some cases in which your application might
not behave as expected when it’s distributed across physical servers, which isn’t some-
thing you can easily test for in the development fabric. To ensure that your application
will behave correctly prior to making your application live, you’ll need to perform
some testing in the staging environment.

TESTING IN THE STAGING ENVIRONMENT

In chapter 2, we showed you how to deploy your application to the staging environ-
ment and how to move your staging web application to the production environment
via the Windows Azure portal. In that chapter, you also learned that when you switch

Asynchronous AJAX requests

Although the development fabric load balancer keeps affinity between your browser
instance and a web role (unless under load), it tends to redistribute requests evenly
when performing AJAX requests.

In section 6.1, you created an ASP.NET AJAX web page that asynchronously calls the
backend web page every 5 seconds and displays the name of the server that processed
the request. If you modify that sample to write to the log, the development fabric load
balancer evenly distributes the request, rather than maintaining affinity with a partic-
ular web role instance.

125How the load balancer distributes requests
your application from staging to production, the application continues to run on the
same server as before and the load balancers simply redirect traffic to the correct serv-
ers. If you want to, you can prove this by deploying the sample that you built earlier in
this chapter to the staging environment (noting the machine name) and then switch-
ing over to the production environment (noting the machine name once again). Fig-
ure 6.8 shows your application running in the staging environment and in the live
environment.

 In figure 6.8, the browser on the left is pointed to the staging environment and is
running on machine RD00155D3021EB. The browser on the right is your web applica-
tion running in production after the switchover. Notice that your application is still
running on the same server even though you’re now running in production (rather
than in staging).

 Because the staging servers will eventually become the production servers, you
should be able to iron out, during your staging testing phase, any errors that might
occur when you’re running multiple instances of your web role.

STAGING AND PRODUCTION LOAD BALANCERS

If you modify your ASP.NET
web polling application from
section 6.1 to display the
machine name, and then
run it in the staging environ-
ment, you get a result that’s
similar to what’s shown in
figure 6.9.

 The requests are distrib-
uted between two different
servers, which is great news.

Nothing beats production environments

You can’t always be sure that an application that works in your development environ-
ment will work in your staging environment. On your development machine, WaWebHost
runs under your user account; anything you can do, it can do. That’s not necessarily
true with the production servers.

Figure 6.8 Your web
application running in
the staging
environment (left) and
in the production
environment (right)

Figure 6.9 Web roles running in the staging environment

126 CHAPTER 6 Scaling web roles
You can be sure that the staging environment will host each instance of your web role
on a separate physical machine (a test that you can’t perform in your development
environment). This behavior could change over time, as Windows Azure matures and
is expanded. The point is that you shouldn’t rely on any apparent behavior when
designing your application. You should design it to be as stateless as possible, with the
understanding that successive trips to the server won’t necessarily always go to the
same server.

INDUCING FAILOVER

In the development fabric, you tested how your application handles failover by killing
the WaWebHost.exe process and then monitoring the application’s behavior. If you
need to, you can perform the same test in the staging and production environments.
In the live environment, the web role is also hosted in a process called WaWeb-
Host.exe, so you can kill the process on the live environment using the following com-
mand (remember that native execution must be enabled for this to work):

System.Diagnostics.Process.GetProcessesByName("WaWebHost").First().Kill();

Create a new web page with a button that will execute the above command when it’s
clicked. Then you can run the AJAX polling application in one browser, kill the
WaWebHost process in another browser, and watch how the load balancer handles the
redirection of traffic. Typically, on the live system (at the time of writing), all traffic is
redirected to the single node. When the FC is convinced that the failed role is behav-
ing again, the load balancer starts to direct requests to that server.

 If you want to test what happens when all roles are killed, you can execute the com-
mand on each role until they’re all dead. If no web roles are running in the live envi-
ronment, your web application won’t process requests anymore and your end user will
be faced with an error. Typically, your service will be automatically restarted and will
be able to service requests again within about a minute.

Quirky affinitization

Both the staging and the production environments can be a little quirky in how they
distribute requests between servers. In some instances, requests will be evenly dis-
tributed between all servers (for example, AJAX requests are distributed this way), but
generally both environments will maintain affinity between a connection and a web
role. If you’re testing whether your application works with multiple instances of your
web role, you should capture the machine name in your request to ensure that your
server can handle requests distributed across instances. Then run your sample ap-
plications in both the staging and production environments and monitor how the ma-
chine name changes.

127Session management
 That’s how requests are load balanced across multiple web roles. Now let’s take a
look at those aspects of a website that are generally affected when running with multi-
ple roles, namely:

� Session management
� Caching
� Local storage

Let’s start with session management.

6.3 Session management
HTTP is a stateless protocol. Each HTTP request is an independent call that has no
knowledge of state from any previous requests. Using sessions is one method of per-
sisting data so that it can be accessed across multiple requests. In ASP.NET, you can use
the following methods of persisting data across requests:

� Sessions
� ViewState

� Cookies
� Application state
� Profile
� Database

Throughout the course of this chapter (and future chapters), we’ll be looking at the
methods of persisting data that you’ll use that are affected when you scale to multiple
web roles. We won’t look at ViewState or cookies in this book; these methods aren’t
used differently in a Windows Azure environment.

 In this section, we’ll look at how running Windows Azure across multiple roles
affects your ASP.NET session and the different types of session providers that you can
use. Specifically, we’re going to talk about how a session works, and you’re going to
build a sample session application. We’ll also discuss in-process sessions and Table
storage sessions.

 Although the concept of sessions is probably familiar to most of you, we want to
recap the purpose of the session and the Session object.

6.3.1 How do sessions work?

A session is effectively a temporary store that’s created server-side for a limited window
of time for a particular browser instance. Your ASP.NET web application can use this
temporary store to store and retrieve data throughout the course of that session.

 If we go back to the Hawaiian Shirt Shop example, you can store the shopping cart
in a session. Using a session as a storage area lets you store items in the cart, but still
have access to the cart across multiple requests. When the session is terminated (the

128 CHAPTER 6 Scaling web roles
user closes his browser), the
session is destroyed and the
data stored in the session is no
longer accessible. Similarly, if
the user opens a new browser
instance, a new independent
session is assigned to this new
browser instance and it has no
access to session data associ-
ated with the other browser instances (and vice versa). Figure 6.10 shows how a ses-
sion is treated with respect to the browser instance and the web server.

 In figure 6.10, browser instance 1 is associated with session ID 12345; the session
key Foo has an associated value of Bar; browser instance 2 is associated with session ID
12346; and the session key Foo has an associated value of Kung. If you were to look at
the output of browser instance 1 and browser instance 2, they would display the cor-
rect values from their associated temporary store.

 When a browser makes a request to an ASP.NET website, it passes a session ID in a
cookie as part of the request. This session ID is used to marry the request to a session
store. For example, in figure 6.10, browser instance 1 has a session ID of 12345 and
browser instance 2 has a session ID of 12346. If no session ID is passed in the request,
then a new session is created and that session ID is passed back to the browser in the
response, to be used by future requests.

 If you need to be able to access data beyond a browser session, then you should
consider a more permanent storage mechanism such as Table storage or the SQL
Azure Database.

 Now that we’ve reminded you how sessions work in ASP.NET, you’re going to build
a small sample application that you can use to demonstrate the effects of using ses-
sions on your web applications in Windows Azure.

6.3.2 Sample session application

To get started, you need a web page where you can store a value in the session for later
retrieval. Add this new ASP.NET web page, called SessionAdd.aspx, to an ASP.NET web
role project. Add the following markup to the page:

<asp:TextBox ID="txtSessionText" Text="" runat="server"/>
<asp:Button ID="btnAdd" Text="Add"
 runat="server" onclick="btnAdd_Click"/>

The markup shows that the page consists of a text box and a button. Use the following
code to set the value of the session key Foo to what the text box contains when the but-
ton is clicked:

protected void btnAdd_Click(object sender, EventArgs e)
{
 Session["Foo"] = txtSessionText.Text;
}

ASP.NET web server
Session 12345 Session 12346
Foo: Bar

Foo: Bar
Foo: Kung

Foo: KungMy web application

12345 12346
Browser instance 1 Browser instance 2

Browser instance 1

Browser instance 2

Figure 6.10 Session independence and the temporary store

129Session management
Now that you can store some session data in your page, you need a page that you can
use to display whatever is stored in Foo. For this example, you’ll use an ASP.NET AJAX
polling timer (similar to the one that you used earlier) that will display whatever is
stored in Foo every 5 seconds. Figure 6.11 shows how this web page looks (prior to
running this page, we used the SessionAdd.aspx page to set the value of Foo to bar).

 To create the page displayed in figure 6.11, add a new ASP.NET page to the project
called SessionTimer.aspx that contains the following markup:

<div>
 <asp:ScriptManager ID="ScriptManager1" runat="server" />

 <div style="padding-bottom: 10px;">
 This page polls the webserver using Ajax every 5 seconds
 </div>

 <div>
 <asp:UpdatePanel ID="RequestsPanel"
 runat="server"
 UpdateMode="Always">
 <ContentTemplate>
 <asp:Label ID="lblResult" runat="server" />
 <asp:Timer ID="Timer1"
 runat="server"
 Interval="5000"
 OnTick="Timer1_Tick" />
 </ContentTemplate>
 </asp:UpdatePanel>
 </div>
</div>

To display the result of Foo in the web page, add the following code-behind to the Ses-
sionTimer.aspx page:

protected void Timer1_Tick(object sender, EventArgs e)
{

 lblResult.Text +=
 string.Format("Time: {0}, Machine Name: {1}, Session (Foo):{2}
",
 ➥ DateTime.Now.ToString(), Environment.MachineName,
 ➥ Session["Foo"] as string);
}

Figure 6.11 Session timer page.
Notice that your session is
maintained for each request.

130 CHAPTER 6 Scaling web roles
Every 5 seconds the SessionTimer.aspx page makes an AJAX request back to the web
server where the request is logged. Then, the name of the computer, the time of the
request, and the value stored in the session for Foo is returned, all of which is then dis-
played in the SessionAdd.aspx page.

 Using this sample, you can see in both the development and live environments which
machine processed the request and what the value of Foo is at any particular time.

6.3.3 In-process session management

By default, ASP.NET uses an in-process session state provider to store session data. The
in-process session state provider stores all session data in memory that’s scoped to the
web worker process (w3wp in standard web servers, or WaWebHost in Windows Azure).
Let’s see how this session provider works.

KILLING YOUR SESSION BY KILLING WAWEBHOST

If the worker process were to be restarted, you would lose any session data because
that data is stored in memory. You can simulate this situation in your development
environment using your SessionTimer page.

TIP Before you attempt to lose your session, ensure that your ASP.NET web
role is running with a single instance.

Go ahead and fire up the SessionAdd.aspx page that you created earlier and set the
value of Foo to bar. After you set this value, open SessionTimer.aspx in the same
browser instance. Let the session value display a few times and then kill the WaWeb-
Host process. As you discovered earlier, if you kill the WaWebHost process, the develop-
ment fabric automatically restarts the process, but all session data is lost. Figure 6.12
shows the result of killing the process.

 In figure 6.12, bar was displayed up until 13:49:55; just after that point, you killed
the WaWebHost process. From that point on, the session was lost and no data was
returned for all other requests.

Figure 6.12 Killing the web
role that’s using in-process
sessions

131Session management
IN-PROCESS SESSION STATE WITH MULTIPLE INSTANCES OF THE WEB ROLE

There are some issues with using the in-process session provider in Windows Azure,
but this one is the real killer: if you’re using multiple web role instances, Windows
Azure doesn’t consistently implement sticky sessions in the production environment.
Any requests made to a web role might not be routed to the same web role.

 As we noted earlier, the production systems generally maintain affinity with a web
role but will sometimes evenly distribute requests among roles. In the case of AJAX
applications, because requests are likely to be distributed across multiple roles, an in-
process session state provider can’t be used; the other role won’t have access to session
data stored in a previous request. Figure 6.13 shows your AJAX polling application
running across multiple web roles.

 In figure 6.13, you can see that any request made to the first role returns the ses-
sion data, but any time the request is distributed to another web role, the session data
stored in the first web role is no longer accessible. When you’re testing your applica-
tions in the development environment, you need to keep in mind that sticky sessions
aren’t always implemented by Windows Azure.

MEMORY CONSUMPTION

If at first you need to run your web role on only a single instance, then you can get bet-
ter performance by running your application with in-process session management.
You should consider this option if you’re unconcerned that a user’s session might be
trashed if the web role is moved to another server (if, for example, the role instance
was moved because of a hardware failure). If you need to scale out to multiple servers
at a later date, you can always move to a session state provider that’ll work cross multi-
ple web roles (such as Table storage) when required.

 Before you decide to run with the in-process session state provider, there’s one
other issue that you should be aware of. If you have a large number of users on your
website and they’re storing a large amount of session data, you might quickly run into
Out of Memory exceptions. The web role host doesn’t automatically free up any active

Figure 6.13 Loss of session
data across multiple web
role instances

132 CHAPTER 6 Scaling web roles
session data until sessions start to expire. Remember that your VM only has 2 GB of
memory allocated to it if you’re running on the smallest (default) size, so you’ll run
out of memory quite quickly.

 If you want to test how your application responds to adding a large amount of ses-
sion data, you can modify the SessionAdd.aspx page to include a button that will add a
large amount of data to the session when clicked. Add the following markup to your
SessionAdd.aspx page:

<asp:Button ID="btnLarge" Text="Large"
 runat="server" onclick="btnLarge_Click"/>

The following code will add a lot of data to the session when the button is clicked:
protected void btnLarge_Click(object sender, EventArgs e)

{
 StringBuilder sb = new StringBuilder();

 for (int i = 0; i < 100000; i++)
 {
 sb.Append("Hello World");
 }

 for (int i = 0; i < 10; i++)
 Session[Guid.NewGuid().ToString()] = sb.ToString();
}

By repeatedly clicking this new button on your website, you’ll find that the memory
usage of your WaWebHost.exe process increases until you start getting Out of Memory
exceptions.

NOTE In Windows Azure, the state server, or out-of-process session state pro-
vider, isn’t supported.

6.3.4 Table-storage session state sample provider

To maintain a session state that can be accessed by multiple web roles that can have
requests evenly distributed between them, you need to use a persistence mechanism
that can be accessed by all web roles. In typical ASP.NET web farms, SQL Server is typi-
cally used, mainly because ASP.NET has a built-in provider that supports it.

 There’s a sample online for a Table-storage session state provider that you can use
in your ASP.NET web applications.

GETTING STARTED WITH THE TABLE-STORAGE SESSION STATE PROVIDER

To start using the Table-storage session state provider, you need to build the sample
provider and then reference that provider in your project. You can get the sample
provider at http://code.msdn.microsoft.com/windowsazuresamples.

 To build the project, double-click the buildme.cmd file in the directory. After
you’ve built the sample project, add a reference to the assembly in your web role
project. Because the Table-storage session state provider is implemented as a custom

133Session management
provider, you’ll need to modify your web.config file to include the provider in the
system.web settings:

<sessionState mode="Custom"
 customProvider="TableStorageSessionStateProvider">
 <providers>
 <clear/>
 <add name="TableStorageSessionStateProvider"
type="Microsoft.Samples.ServiceHosting.AspProviders
➥ .TableStorageSessionStateProvider"
 allowInsecureRemoteEndpoints="false"
 accountName="devstoreaccount1"
 sharedKey="Eby8vdM02xNOcqFlqUwJPLlmEtlCDXJ1
 ➥ OUzFT50uSRZ6IFsuFq2UVErCz4I6tq/K1SZFPTOtr/KBHBeksoGMGw=="
 containerName="sessionstate"
 applicationName="ProviderTest"
 blobServiceBaseUri="http://127.0.0.1:10000/devstoreaccount1"
 tableServiceBaseUri="http://127.0.0.1:10002/devstoreaccount2"
 sessionTableName="Sessions" />

 </providers>
</sessionState>

The above configuration is for using the Table-storage and BLOB-storage providers in
the development fabric. The creation of the appropriate tables in the Table-storage
account is automatically taken care of for you by the provider. On deployment of your
application, you’ll need to modify web.config to use your live Table-storage account.

 If you now run your application in either the development fabric or the live envi-
ronment, you’ll find that you can store and retrieve session data across multiple
instances of your web role.

PERFORMANCE CONSIDERATIONS

Although Table storage gives you a session state that’s accessible across multiple server
instances in a load-balanced environment, it does incur a performance hit. To test the
performance of the live system, we modified the Table-storage provider to record the
time that lapsed between requesting an item from the session and retrieving a
response. Because session state is reloaded from the session provider on every page
load, this test will allow you to see the impact of the Table-storage session state provider

Ever-growing tables

One word of warning about the Table-storage provider: it doesn’t clean up after itself
with respect to expired sessions. Because Table storage is a paid, metered service,
we advise you to have either a worker role, a simulated worker role (discussed later
in this chapter), or a background thread that cleans up any expired sessions from the
table. If you don’t clean up this data, you’ll be paying storage costs for data that is
no longer used.

134 CHAPTER 6 Scaling web roles
on your website. Figure 6.14 is a modified version of the SessionTimer.aspx page that
you built earlier that also displays the time recorded to load the session during the
page load.

 You can see in figure 6.14 that although you’re storing only one item in the session
(bar in session key foo), it still takes somewhere between 0.1 to 0.2 seconds to retrieve
the session state. This load time is probably acceptable for most applications. Table
storage is a good solution for the session in Windows Azure until a more performant
solution, such as a cache-based session provider, is available.

 If you store a large amount of data in the session, you might find the performance
of the Table-storage provider a little too slow at the moment. Figure 6.15 shows the
SessionTimer.aspx page after we added a large amount of data to the session by click-
ing the large session button that we built earlier twice.

 In figure 6.15, you can see that the performance of the session provider seriously
degrades when a large amount of data is stored in the session. In this example, it took
1 to 2 seconds just to load the session. In cases when you need minimal session load
times or when you’re storing large amounts of data, you should consider another ses-
sion provider solution (for example, SQL Azure Database or a cache-based session
provider).

Figure 6.14 Response times of the Table-storage session state provider for a single small item

Figure 6.15 Large session state response load times using the Table-storage provider

135Cache management
6.4 Cache management
In any typical website, there’s usually some element of static reference data in the sys-
tem. This static reference data might never change or might change infrequently.
Rather than continually querying for the same data from the database, storing the
data in a cache can provide great performance benefits.

 A cache is a temporary, in-memory store that contains duplicated data populated from
a persisted backing store, such as a database. Because the cache is an in-memory data
store, retrieving data from the cache is fast (compared to database retrieval). Because
a cache is an in-memory temporary store, if the host process or underlying hardware
dies, the cached data is lost and the cache needs to be rebuilt from its persistent store.

 Never rely on data stored in a cache. You should always populate cache data from a
persisted storage medium, such as Table storage, which allows you to persist back to
that medium if the data isn’t present in the cache.

NOTE For small sets of static reference data, a copy of the cached data resides
on each server instance. Because the data resides on the actual server, there’s
no latency with cross-server roundtrips, resulting in the fastest possible
response time.

In most systems, there are typically two layers of cache that are used: the in-process
cache and the distributed cache. Let’s take a look at the first and most simple type of
cache you can have in Windows Azure, which is the ASP.NET in-process cache.

6.4.1 In-process caching with the ASP.NET cache

As of the PDC 2009 release, the only caching technol-
ogy available to Windows Azure web roles is the built-in
ASP.NET cache, which is an in-process individual-server
cache. Figure 6.16 shows how the cache is related to
your web role instances within Windows Azure.

 Figure 6.16 shows that both server A and server B
maintain their cache of the data that’s been retrieved
from the data store (either from Table storage or from

SQL Azure session state provider

In typical ASP.NET web farms, SQL session state providers are generally used as the
session provider. Although this works, it’s not the best use of a SQL database; it’s
not querying across sessions, but rather it’s acting as a central storage area.

To date, there isn’t a SQL Azure session state provider available (although this could
change). Rather than trying to mess with SQL Azure to make it work with sessions,
it’s probably best to either stick to Table storage, use a cache-based session provid-
er, use an in-process provider, or architect your application so it’s not so reliant on
sessions.

Server A Server B

Cache

RDRoleHost

Cache

RDRoleHost

Table storage / SQL Azure database

Figure 6.16 The ASP.NET cache;
notice that each server maintains
its own copy of the cache.

136 CHAPTER 6 Scaling web roles
SQL Azure database). Although there’s some duplication of data, the performance
gains make using this cache worthwhile.

Although in-memory caching is suitable for static data, it’s not so useful when you
need to cache data across multiple load-balanced web servers. To make that scenario
possible, we need to turn to a distributed cache such as Memcached.

6.4.2 Distributed caching with Memcached

Memcached is an open source caching provider that was originally developed for the
blogging site Live Journal. Essentially it’s a big hash table that you can distribute across
multiple servers. Figure 6.17 shows three Windows Azure web roles accessing data
from a cache hosted in two Windows Azure worker roles.

TIP In figure 6.17, you can see that your web
roles can communicate directly with worker
roles. In chapter 15, we’ll look at how you can do
this in Windows Azure.

Microsoft has developed a solution accelerator that
you can use as an example of how to use Mem-
cached in Windows Azure. This accelerator con-
tains a sample website and the worker roles that
host Memcached. You can download this accelera-
tor from http://code.msdn.microsoft.com/winazurememcached. Be aware that mem-
cached.exe isn’t included in the download. Use version 1.2.1 from http://jehiah.cz/
projects/memcached-win32/.

In-process memory cache

You should also notice in figure 6.16 that the default ASP.NET cache is an individual-
server cache that’s tied to the web server worker process (WaWebHost). In Windows
Azure, any data you cache is held in the WaWebHost process memory space. If you
were to kill the WaWebHost process, the cache would be destroyed and would need
to be repopulated as part of the process restart.

Because the VM has a maximum of 1 GB of memory available to the server, you should
keep your server cache as lean as possible.

Hosting Memcached

In chapter 7, we’ll look at how you can launch executables (such as Memcached) from
a Windows Azure role.

Although we’re using a worker role to host your cache, you could also host Memcached
in your web role (saves a bit of cash).

Web role 1 Web role 2 Web role 3

Worker role 1 Worker role 2

Memcached Memcached

Figure 6.17 Three web roles
accessing data stored in two worker
role instances of Memcached

http://jehiah.cz/projects/memcached-win32/

137Cache management
To get started with the solution accelerator, you just need to download the code and fol-
low the instructions to build the solution. Although we won’t go through the down-
loaded sample, let’s take a peek at how you store and retrieve data using the accelerator.

SETTING DATA IN THE CACHE

If you want to store some data in Memcached, you can use the following code:

AzureMemcached.Client.Store(Enyim.Caching.
➥ Memcached.StoreMode.Set, “myKey”, “Hello World”);

In this example, the value “Hello World” is stored against the key “myKey”. Now that
you have data stored, let’s take a look at how you can get it back (regardless of which
web role you’re load balanced to).

RETRIEVING DATA FROM THE CACHE

Retrieving data from the cache is pretty simple. The following code will retrieve the
contents of the cache using the AzureMemcached library:

var myData = AzureMemcached.Client.Get<string>(“myKey”));

In this example, the value “Hello World” that you set earlier for the key “myKey”
would be returned.

 Although our Memcached example is cool, you’ll notice that we’re not using the
ASP.NET Cache object to access and store the data. The reason for this is that unlike
the Session object, the Cache object (in .NET Framework 3.5SP1, 3.5, or 2.0) doesn’t
use the provider factory model; the Cache object can be used only in conjunction with
the ASP.NET cache provider.

6.4.3 Cache extensibility in ASP.NET 4.0

Using ASP.NET 4.0, you’ll be able to specify a cache provider other than the standard
ASP.NET in-memory cache. Although this feature was introduced to support Micro-
soft’s new distributed cache product, Windows Server AppFabric Caching (which was
code-named Velocity), it can be used to support other cache providers, such as Mem-
cached. The configuration of a cache provider is similar to the configuration of a ses-
sion provider. You could use the following configuration to configure your cache to
use AppFabric caching:

<system.caching>
 <cache defaultProvider="FrameworkCacheProvider">
 <providers>
 <add name="myVelocityInstances"

type="System.Data.Caching.VelocityCacheProvider,System.Data.Caching”
 remoteServerName="myServer"
 remoteServerPort="4435"
 namedCache="myCache"
 securityToken="DEC3D34CA29112" />
 </providers>
 </cache>
</system.caching>

138 CHAPTER 6 Scaling web roles
Although the Windows Azure team will allow you to hook into any cache provider that
you like, the real intention is for you to use a Windows Azure-hosted shared-cache role
(that’s probably based on AppFabric caching).

6.5 Summary
OK, so you’ve probably learned everything that’s relevant about scaling your web
applications from this chapter (and even from some of the earlier chapters). You
should’ve come to realize that websites can’t cope with being under pressure and the
best thing that you can do is design your web application to scale out. If, for whatever
reason (and there isn’t a good one that we can think of), you can’t scale out, you can
always host your website on a bigger box until you can.

 In this chapter, we also looked at how Windows Azure distributes requests and how
you can test them in your own environment using the development fabric load bal-
ancer. Although you can’t test every scenario, you can get a sense as to how your appli-
cation will behave when you run under multiple instances. Finally, you learned how to
handle sessions and caching across multiple servers (if you want to do that).

 Now that we’re starting to look at some of the more advanced web scenarios, in the
next chapter we’re going to take a peek at how you can use Windows Azure support
for full-trust applications, how to build non-ASP.NET–based websites, and how to exe-
cute non-.NET Framework applications.

Cache-based session provider

Now that you can see the benefits of a distributed cache, it’s worth revisiting session
providers. As stated earlier, most ASP.NET web farms tend to use SQL Server as the
session provider. With the increasing popularity of distributed caches, it’s now be-
coming more common for web farms to use a cache-based session provider rather
than a SQL Server–based provider.

When a distributed cache is used in a web farm, it makes sense to leverage it whenever
possible to maximize its value. Typically, distributed caches perform better than do
databases such as SQL Server; you can improve the performance of your web appli-
cation by using a faster session provider. Because session state is ultimately volatile
data (not unlike cached data), a transactional data storage mechanism such as SQL
Server is typically overkill for the job required.

If you want to use a Memcached-based session provider (your session data is stored
in your Memcached instance), you can download a ready-made provider from http://
www.codeplex.com/memcachedproviders.

Running full-trust,
native, and other code
Microsoft is committed to making Windows the best place to run any type of appli-
cation. To that end, it’s making Azure an open system, where you can run anything
you want. Microsoft could have easily made Azure .NET-only. Azure would’ve been
easier for Microsoft to manage, and easier to design the infrastructure for. But
Microsoft didn’t do that. It opened Azure up, as wide as the on-premises version of
Windows is, so that its customers can run almost anything on Azure that can be run
on Windows today. Azure can run unmanaged code (C++, for example), any code
that needs full trust on the local machine, and code from any other platform that
runs on Windows. There’s support for PHP, Python, Ruby, and Java. But Microsoft
didn’t even stop there.

This chapter covers
� Running any Common Gateway Interface (CGI)

interpreter you want

� Spawning processes and calling local
executables

� Calling native libraries with P/Invoke
139

140 CHAPTER 7 Running full-trust, native, and other code
 Microsoft worked with a series of open source teams to provide useful and valuable
SDKs for each platform, so that they’re equal citizens in the cloud. A plug-in for
Eclipse was developed in a partnership between Microsoft and an open source team
so that Eclipse developers can have an integrated experience.

 The openness of Azure is its power. The core of this openness is Azure’s support for
running in a full-trust environment. After this environment was enabled, you could
run anything on Azure, including FastCGI. Because you can run FastCGI, you can run
most other web platforms, including PHP. For some, the challenge isn’t about just run-
ning a different web platform; it’s about running legacy code in a better way. Azure also
supports spawning processes and calling into native libraries with P/Invoke so that
developers can squeeze all the power out of those massive eight-way servers out there.

 Enough background information. Let’s talk about how you can harness all the
power that Azure has to offer.

7.1 Enabling full-trust support
When any code is run in Windows, it’s run in a particular trust level. This trust level
defines what the code is allowed to do. For example, code in a partial-trust level can’t
access local hardware and system resources, whereas code running in a full-trust envi-
ronment has access to just about anything.

 Trust is only one piece of the equation. The user account permissions must allow
an operation, in addition to the trust level. Trust level is enforced by code access security
(CAS). CAS is a way to define what an application is allowed to do and is applied at the
Common Language Runtime (CLR) level. A CAS policy can determine what methods
and libraries you use and what level of local-system access your code has access to.
ASP.NET comes with several standard trust policies, expressed in CAS. One of them is
the ASP.NET medium-trust policy, which restricts the application to just being able to
run itself, without any access to the broader system at play. The Azure team took this
policy, tweaked it to fit its needs, and published a modified medium-trust policy.

 You should try to run in the lowest trust level possible. Doing so minimizes the
damage that can be done if your application is hijacked, or if your code runs amok.
This concept is called least privileged and refers to always running your code with the
least amount of privileges needed to get the job done. If your code doesn’t need
access to the registry, it shouldn’t have access. Running in this way restricts what the
bad guys can do if your system is compromised, or the damage you might cause if
some code in your application becomes self-aware and starts to run amok. Bad out-
comes might include files being placed in the system folders, your desktop wallpaper
being changed to lolcats, or naughty things being written to the registry.

 You should run your code in full trust only when you absolutely have to. Unfortu-
nately, full trust is required for any unmanaged code you might want to run and for
accessing the Azure diagnostics systems.

 There are times when your application legitimately needs advanced permissions. It
could be because you’re referencing a library that requires them, or you’re accessing

141FastCGI in Windows Azure
the local system somehow. When you need this kind of permission, you can change
the configuration of your cloud service to run in a full-trust model. While you’re run-
ning in a full-trust model, you have access to do just about anything you want. The
identity your application is running under is still that of a limited user on the server,
which keeps you from creating Windows user accounts and formatting the hard drive.
While your code is able to run any opcode through the CLR that can possibly be run,
the local user permissions are limited, such that you can only do things for your appli-
cation and not system wide.

 Full trust is enabled by default. To disable full trust, set the enableNativeCode-
Execution setting to false:

<WorkerRole name="VerifyOrder" enableNativeCodeExecution="false">
 <ConfigurationSettings>
 <Setting name="InboundQueue"/>
 <Setting name="OutboundQueue"/>
 <Setting name="AccountName" />
 <Setting name="AccountSharedKey" />
 <Setting name="QueueStorageEndpoint" />
 <Setting name="TableStorageEndpoint" />
 </ConfigurationSettings>
 </WorkerRole>

Full trust is the doorway to running just about any code you can think of. Another
option that will be released soon is the ability to run your own VMs in the Azure data
center. There isn’t a lot of information about this yet as it was just announced at the
PDC 2009, but it promises to let customers run any machine they have today up in the
cloud, including any off-the-shelf applications.

 That’s all you need to know about full trust for now. If trust level is important to
your existing code, understand that you have access to the same tools in Azure. Now
we’re going to look at some scenarios that you might be doing today on-premises.
We’re going to show how they work the same way in the cloud.

7.2 FastCGI in Windows Azure
FastCGI is a module in IIS 7 that provides a way to run CGI-based applications. CGI is a
standard interface that modules can be written to, to plug in to any web server. The
web server then pipes each request through these modules, letting each module work
on responding to the request. Sometimes a simple static resource module immedi-
ately responds with an image file. Other modules execute a whole application to
respond with HTML. Modules responding to web requests is how any web server
works, especially ASP.NET and PHP. IIS 7 supports this standard with its FastCGI module
that’s run in the IIS 7 pipeline (when the pipeline is configured correctly).

 To take advantage of FastCGI in Azure, you need to configure the FastCGI support
for your development workstation, and then configure your web role to enable the
PHP interpreter. After you’ve completed the configuration, your Azure application
will be able to host a PHP application and respond to PHP requests from web clients.

142 CHAPTER 7 Running full-trust, native, and other code
7.2.1 Enabling FastCGI in your local cloud environment

The first step you need to take to run PHP in Azure is a local step. If you want to run
and debug PHP running in the local cloud environment, you need to reconfigure the
local instance of IIS. The readme for the SDK contains all the gory details for enabling
FastCGI. The short steps are to enable the CGI feature of the web server role, if you’re
running Windows Server 2008. If you’re running Vista or Windows 7, you’ll need to
enable the CGI feature in the Application Development Features group in the Win-
dows Features applet, as shown in figure 7.1.

 Easy, right? Now, you’ve got FastCGI and PHP enabled. Let’s configure them.

7.2.2 Configuring Azure for FastCGI and PHP

To run FastCGI in Azure, you need to do more than just tweak one setting in the ser-
vice definition file, but it isn’t too complicated. You need to include a new file in your
web role project called web.roleConfig, shown in listing 7.1. The file needs to be in
the root of the web project, and needs to be modified from the default contents when
you add it. To avoid some of these steps, you can create a CGI web role instead of a
normal web role when you create your project. We’ll cover that a little later.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.webServer>
 <fastCgi>

Listing 7.1 The web.roleConfig file configures IIS for the use of FastCGI

Figure 7.1 If you use Windows 7 for your
development workstation, you’ll need to
enable CGI support for your local instance
of IIS. You can do this by using the Windows
Features applet in the control panel.

143FastCGI in Windows Azure
 <application fullPath="%RoleRoot%\approot\myinterpreter.exe"/>
 </fastCgi>
 </system.webServer>
</configuration>

After you add the web.roleConfig file, include the CGI interpreter for your platform
in the project. If you’re upgrading a normal web role project, change the build
action of both the interpreter and the web.roleConfig file to content. If you’re using
a CGI Web Role project, this is already done for you. This setting tells Visual Studio to
do nothing with the files, but to include them in the output package that is uploaded
to Azure. Modify the fullPath attribute to point to the interpreter that you include
in your project.

 Excellent. You’ve enabled FastCGI, and uploaded and enabled the PHP interpreter
that IIS 7 will use to execute your web pages. Now you need to tell IIS 7 what type of
requests should be routed to this new interpreter. Should it be every request, or only
requests that end in .php? These routing instructions are called handlers, and are con-
figured in the plain old web.config file of your web project. The following example
shows the handler for PHP:

<add name="PHP with FastCGI" path="*.php" verb="*"
➥ modules="FastCgiModule"
➥ scriptProcessor="%RoleRoot%\php\php-cgi.exe"
➥ resourceType="Unspecified" />

The handler definition defines a name for the handler and the path. The path is what
form of requests should be routed to the interpreter that the handler is configuring.
In this example, any request to the web server that ends in .php is sent to FastCgi-
Module for processing. FastCgiModule then passes the request on to the PHP inter-
preter for processing.

 All file types have a handler in the configuration. Requests for .aspx are executed
by ASP.NET with a handler that’s configured for you when you install ASP.NET.
Requests for static files such as .gif, .jpg, and other simple files are routed to the static
file handler. When writing the configuration, keep in mind that you need to use the
macro %RoleRoot% to point to the root of where your files will be running from. Cur-
rently this root is a small drive called E:\ in the Azure server. Don’t rely on it to always
be E:\; it could change, which is why the %RoleRoot% macro is provided.

 Add the handler configuration to the handlers section of the system.webServer
part of the web.config file for your web project. Now IIS can set up the handler and
start accepting requests.

 Let’s give IIS some requests to accept by making an application that’ll accept and
process PHP requests. There are several large applications running on WordPress, on
PHP, and on Windows Azure.

7.2.3 Setting up HelloAzureWorld.php

This book isn’t about PHP, so our sample is going to focus on simply getting some PHP
to work in the cloud. We’ll leave what to do with PHP up to you, and perhaps to

144 CHAPTER 7 Running full-trust, native, and other code
another book. For now, you’re going to build a simple application that’s going to say
“Hello Azure World” and display some server information, as shown in figure 7.2.

 To build your Hello Azure World PHP application, create a new Cloud Service solu-
tion in Visual Studio. Instead of adding a regular web role to the solution, you’re
going to add a CGI web role. We named ours HelloPHP, as seen in the fabulous figure
7.3. The CGI Web Role template includes the typical changes you’ll need to run a CGI-
based application in Azure.

Figure 7.2 Your Hello Azure World PHP web application

Figure 7.3 Selecting a
single web role for your PHP
web application. To use
FastCGI, choose the CGI
Web Role template, which
comes prepackaged with
the web.roleConfig file
you’ll need.

145FastCGI in Windows Azure
The project will already contain a web.roleConfig file, with some notes on how to
modify it correctly. The notes remind you to enable native code execution, and to
change the path to the interpreter executable (php-cgi.exe in this case). You can
download the correct version of the PHP interpreter from windows.php.net. (We rec-
ommend putting it in a subfolder of the project.) Don’t forget to mark any non-.NET
files that you add as content in the build action for that file. Depending on the ver-
sion of PHP that you download, you might have to set the time zone in the php.ini file
to a valid time zone value, such as America/New_York.

 The next step is to make some changes to the web.config file. You’ll make all these
changes in the system.webServer section. All lines in this section are used to config-
ure IIS 7, removing the need to use the IIS management tool or to log on to the web
server. Not having to use the management tool is great, because now you can put the
required web server configuration into the configuration for the web application and
it’ll travel with your application to whichever web server you deploy it to. You have to
configure your application this way in Windows Azure because you can’t log in directly
to your server.

 You need to make two changes to web.config (which are shown in listing 7.2):

� Add a default document section, so that new visitors come to the home page for
your web site correctly.

� Add the configuration for the handler, to tell IIS what to do with any web
requests that involve PHP.

<system.webServer>
 <defaultDocument>
 <files>
 <add value="index.php"/>
 </files>
 </defaultDocument>
.
.
.
 <handlers>
.
.
. <add name="FastGGI Handler"
 verb="*"
 path="*.php"
 scriptProcessor="%RoleRoot%\approot\php\php-cgi.exe"
 modules="FastCgiModule"
 resourceType="Unspecified" />
 </handlers>
</sytem.webServer>

Your project is set up now, and you can start adding some real PHP code. Add a text file
to your web project and name it index.php. Add the following PHP code to index.php:
<html>
 <head>

Listing 7.2 Changing the web.config file to run your PHP application

146 CHAPTER 7 Running full-trust, native, and other code
 <title>PHP in Azure</title>
 </head>
 <body>
 <?php echo '<p>Hello Azure World</p>'; ?>

 <?php phpinfo(); ?>
 </body>
</html>

This code does a few basic things. As required by the Union of Demo Code Develop-
ers, we have to somehow write to the screen some reference to "Hello World." In this
case, you’re going to use echo, and write out <p>Hello Azure World</p>. Lower
down in the code, you use the famous phpinfo() function. This function writes a
bunch of diagnostic information about the version of PHP you’re running and infor-
mation about your web server. You commonly run this function when you first install
PHP on a server, to confirm that everything is working correctly. If you deploy your
application to the cloud and then browse the results, you’ll find some interesting facts
about the server running your application: the user name your code is running under
is a GUID, and your website files are stored on E:\.

 Running PHP in Azure is pretty easy after you set up a few options. That might be why
PHP on Azure has proven to be quite popular. Microsoft and WordPress announced at
the PDC in 2009 that they’re working together, and ICanHazCheeseburger announced
that it’s been running some of its sites with WordPress running on PHP on Azure.

 Now that we have that under our belts, we can start looking at spawning processes
in Azure.

7.3 External processes in Windows Azure
Some enterprise applications rely on child processes to be run in an asynchronous
way. As a way to show how to work with external processes, you’re going to build a
small website that converts videos to different video formats. Because we don’t want
you to write all the video conversion code, you’re going to leverage FFmpeg.

FFmpeg is an open source project that provides a cross-platform way to play, con-
vert, and stream media files. You can download it at FFmpeg.org. You’ll have to drill
around to find the latest build. Also, be aware that it’s in a .RAR file, requiring the use
of a tool like WinRAR to extract it. For this task, we’re using the Windows-compatible
binaries. In the package, you’ll find an executable called FFmpeg.exe. This is the core
executable that you’ll be using. Figure 7.4 shows a screen shot of the application
you’re going to build.

 The application will provide a simple way to browse videos in your BLOB account,
and to convert one by providing a destination name. The extension of the new file-
name will tell FFmpeg what format to convert to.

 We already have several versions of the Big Buck Bunny trailer uploaded to our
BLOB account. Big Buck Bunny is part of the open movie project, and is released under
Creative Commons. You can download the whole movie at www.bigbuckbunny.org.

 If you enter a destination filename, for example SmallMovie.mpg, the website cre-
ates a new background process, executes FFmpeg on the big movie, and then places

147External processes in Windows Azure
the new file (after it’s converted into an MPG) back into the BLOB account. Now we’re
going to tell you how to do that yourself.

7.3.1 Spawning a sample process

You can’t run this program in the process that’s executing your .NET code, so you’ll
spawn a new process and have it execute the application for you. The SDK has some
great sample code for how to spawn this process and how to interact with it. You’re
going to use the sample as it is, with some tweaks based on what you’re doing. You can
find the sample as part of the Full Trust demo, which is in the ExecuteProcess.aspx.cs
file. The method is called Run.

 The Run method provides ways to capture any output from the process, so that you
can use the output in a way that makes sense for you. In the sample application for
this section, we’ve chosen to capture some basic facts about what’s happened and pipe
that to the Azure log. Use the following shortened Run command; for this project, the
command is named ExecuteCommand.

protected int ExecuteCommand(string cmdPath, string arguments)
{
 var process = new Process();
 var startInfo = process.StartInfo;
 startInfo.UseShellExecute = false;
 startInfo.CreateNoWindow = true;
 startInfo.FileName = Server.MapPath(cmdPath);
 startInfo.Arguments = arguments;
 startInfo.WorkingDirectory =
 ➥ Path.GetDirectoryName(startInfo.FileName);
 startInfo.RedirectStandardError = true;
 startInfo.RedirectStandardOutput = true;

Figure 7.4 A screen shot of the Simple Azure Video Converter, which uses the open
source FFmpeg to convert media files. Your web role will call out to the FFmpeg
application by launching it as an external process.

148 CHAPTER 7 Running full-trust, native, and other code
 process.Start();
 process.BeginErrorReadLine();
 process.BeginOutputReadLine();
 process.WaitForExit();
 var elapasedTime = process.ExitTime - process.StartTime;
 RoleManager.WriteToLog("Information", String.Format("Command: {0}
 ➥ {1}", cmdPath, arguments));
 RoleManager.WriteToLog("Information", String.Format("Exit Code: {0}",
 ➥ process.ExitCode));
 RoleManager.WriteToLog("Information", String.Format("Elapsed Time:
 ➥ {0}", elapasedTime)); return process.ExitCode;
}

In this method, you’re starting a new process on the operating system and telling it to
run your executable. The path to the program to run is set to the FileName property,
and any command-line arguments you want to pass are set to the Arguments property.
The process isn’t actually started until the Start method is called. At the end of your
method, you’re capturing some runtime information and saving that to the Azure log.

 When running in the cloud, you can spawn both 32-bit and 64-bit processes. This
makes it easy to move legacy code into the cloud. You can spawn 64-bit processes in
the local development fabric as well, unless you’re running a 32-bit machine. In that
case, you’ll only be able to spawn 32-bit processes when you’re running locally.

 You can start multiple processes in your role, but keep in mind that each new pro-
cess takes up memory and CPU time. Start too many of them and your instance won’t
be able to get any real work done.

 Like most applications you’re likely to spawn, FFmpeg works only on files stored on
the local filesystem. To accommodate the application, you’re going to copy the movie
from BLOB storage to the local storage.

7.3.2 Using BLOB storage

The StorageClient library includes some simple methods to make using BLOB storage
easy. You call either the DownloadToFile or UploadFile method on a Blob reference.
In the sample application, you’ll figure out where the BLOB is and where you want to
put it. Use the code in the following listing to download the file, run the conversion
code, and then upload the new file back to the BLOB container.

public void ConvertVideoFromBlob(string _containerName,
➥ string _inputName, string _outputName)
 {
 string inputName = _inputName.ToLower();
 string outputName = _outputName.ToLower();

 CloudBlobContainer videoContainer =
 ➥ blobClient.GetContainerReference(_containerName);

Listing 7.3 Copying a BLOB to local storage and back again

149Calling native libraries with P/Invoke
 videoContainer.CreateIfNotExist();
 videoContainer.GetBlobReference(inputName)
 ➥ .DownloadToFile(inputName);

 ConvertVideo(localDisk.RootPath + inputName,
 ➥ localDisk.RootPath + outputName);

 videoContainer.GetBlobReference(outputName)
 ➥ .UploadFile(inputName);

 File.Delete(localDisk.RootPath + inputName);
 File.Delete(localDisk.RootPath + outputName);
 }

After the movie is copied down to local storage at q, you can run the FFmpeg com-
mand at w. To run FFmpeg at the command line, use something like the following:

FFmpeg.exe -i BigBuckBunny_Trailer_400p.ogg -y SmallerMovie.mpg

To execute this command as a process, call the ExecuteCommand method with the fol-
lowing code, which spawns the process, executes FFmpeg, passes in the parameters,
and waits for the command to finish executing:

string VideoArgs = string.Format(@"-i {0} -y {1}",
➥ localInputFilename, localOutputFilename);
ExecuteCommand(@"ffmpeg\ffmpeg.exe", VideoArgs);

No matter which way you run FFmpeg, the result is a new movie file, of the proper type,
in the same local storage folder where the source movie was.

 Your next step is to copy the file back into BLOB storage. Copying the file creates a
new BLOB in your videos container that has the same name the one that the user
asked for in the web application at e. First, you get a BLOB reference with the file-
name that the user wanted. This BLOB doesn’t exist yet, it’s just a reference. When you
call UploadFile, the file is uploaded to BLOB storage. When the file is finally
uploaded, you clean up after yourself by deleting both local files.

 Spawning processes is an important option to have, but you should use it only
when you’re migrating an application to Azure that relies on an external dependency.
You shouldn’t intentionally architect a new system to use this feature. For a new sys-
tem, you should probably use inter-role communication between different role
instances, which gives your solution more flexibility when it’s time to scale.

 Now you’re familiar with two ways to use native code in Azure. Let’s look at one
more way: calling into a native library. Remember, these are important tools to have,
but we wouldn’t use them unless we absolutely had to.

7.4 Calling native libraries with P/Invoke
We’ve looked at two ways to leverage native code in Azure: using FastCGI and spawning
processes. The third option at your disposal is to call into a native library with P/Invoke.
P/Invoke allows you to directly call a native library, such as a Windows dynamic link

Downloads BLOB
to local file

q

Converts video using
an external process

w

e
Uploads new file
to BLOB container

150 CHAPTER 7 Running full-trust, native, and other code
library (DLL). P/Invoke is shorthand for platform invoke. You use P/Invoke when you
want to call a platform API directly. If you work mostly in .NET, you’re rarely calling the
platform API directly; instead, you’re using classes out of the .NET Framework or the
Base Class library.

 The limitation with P/Invoke is that you can call only 64-bit native libraries while run-
ning in the cloud. If you happen to be developing on a 32-bit machine, you’ll be able
to call a 32 bit-library locally, but not in the cloud. You can work around this problem
by spawning a 32-bit subprocess, as outlined in section 7.3.1, and calling P/Invoke from
there. We think this is too much work though; you should stick with 64-bit libraries.

 Calling native libraries is a special skill to begin with, so we aren’t going to cover
everything you need to know about doing that in .NET. Calling them in the cloud is a
lot like when you do it locally.

 When working with native libraries, you need to first import the DLL into your
namespace, and then provide a façade method into the native libraries method. This
will involve a great deal of code that will map native data types to .NET CLR types.

 Don’t forget to allow native code execution in your cloud service definition file;
otherwise, you’ll receive a security exception.

 The easiest way to implement the signatures you need in your code is to get them
from http://www.pinvoke.net, like we do. This website provides the signatures for just
about any native call you could possibly want to make.

 Now let’s get to it and use P/Invoke to call a native library. Although you’re free to
follow along with how we do this, you might consider skipping to the sample code for
the book. It’ll be easier to see how it all fits together.

7.4.1 Getting started

You’re going to build a simple web application for Azure that will list the files and
directories in a given folder. You could easily build this with managed code, without
P/Invoke, but we thought it would make for a good example.

 The first step is to add the interoperability services namespace to your project:

 using System.Runtime.InteropServices;

Then you import the native methods that you want to call:

 [DllImport("kernel32", CharSet = CharSet.Unicode)]
public static extern IntPtr FindFirstFile(string lpFileName,
➥ out WIN32_FIND_DATA lpFindFileData);

In this example code, you’re importing a method called FindFirstFile from
kernel32, which is called by the DLL. This line of code defines a series of parameters
you’ll need to provide to the method for it to work. The first parameter, lpFileName,
is the path of the folder you want to look in. The second parameter, lpFindFileData,
is a variable that the results will be stored in. The FindFirstFile method also returns
a handle to an object that will be your pointer into the filesystem. You’ll use this han-
dle to iterate through the folder you’re pointing at by calling another imported
method, FindNextFile. Always remember to close any handle objects you’re using

151Calling native libraries with P/Invoke
while working with native libraries; otherwise, they’ll be left open in memory, causing
memory leaks.

 It’ll often be the case that the method you’re importing requires input and output
parameters, and return values that use a type that isn’t supported in .NET. You’ll need
to define these types so that they can be used. The following listing shows an example
structure that defines the data about the file that the finder just found.

[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Unicode)]
 public struct WIN32_FIND_DATA
 {
 public FileAttributes dwFileAttributes;
 public FILETIME ftCreationTime;
 public FILETIME ftLastAccessTime;
 public FILETIME ftLastWriteTime;
 public int nFileSizeHigh;
 public int nFileSizeLow;
 public int dwReserved0;
 public int dwReserved1;
 [MarshalAs(UnmanagedType.ByValTStr, SizeConst = 260)]
 public string cFileName;
 [MarshalAs(UnmanagedType.ByValTStr, SizeConst = 14)]
 public string cAlternate;
 }

After you define these types, you’ll be able to call into the method just fine.

7.4.2 Calling into the method

In this example, you’re going to make the initial FindFirstFile call, and then per-
form a Do loop until FindNextFile comes back empty. With each iteration of the loop,
you’ll copy data from the return data structure to a class, myFileData, which you also
have to define. Then you’ll bind a collection of myFileData objects to a simple Grid-
View on the web form. All this is shown in listing 7.5.

hFileFinder = FindFirstFile(currentPath, out foundFile);
 do
 {
 fileList.Add(new myFileData()
 { Filename = foundFile.cFileName,
 Filesize = foundFile.nFileSizeLow,
 isDirectory = (foundFile.dwFileAttributes &

 ➥ FileAttributes.Directory) != 0 });
 }
 while (FindNextFile(hFileFinder, out foundFile));

 FindClose(hFileFinder);

 gvFileList.DataSource = fileList;
 gvFileList.DataBind();

Listing 7.4 Defining a data type to work with a native library

Listing 7.5 Processing each file that’s found

152 CHAPTER 7 Running full-trust, native, and other code
Working with native libraries and P/Invoke can be complicated. You should look to
using this way to use native code only when you can’t possibly do what you need to do
with a class in the .NET library. Using native libraries can introduce brittleness into
your solution by creating external dependencies.

7.5 Summary
Microsoft has provided broad support for running just about anything on Azure. It
didn’t take the easy way and limit cloud developers to just .NET code because Micro-
soft wants Azure to be a usable platform with broad adoption. The ability to run
FastCGI, spawn processes, and call native libraries makes it easier for you to port exist-
ing applications and to support a broader array of applications.

 With Azure’s support for FastCGI you can leverage any CGI-compatible module in
Azure. These modules include PHP, Ruby, and many other web platforms. With just a
few simple steps, you can deploy one of these platforms to your web roles in Azure.

 Spawning external processes is important when you have an external dependency
in a system you might be migrating to the cloud. You can also spawn them to manually
parallelize your application.

 Some applications that are built with unmanaged code need to access native librar-
ies for system-level access. Using P/Invoke to access these libraries is available in Azure,
but it can be complicated. You should leverage this feature only if you truly need it.

 Azure isn’t just for Web 2.0 web applications with a viral nature; it’s also for serious
enterprise applications. Those applications often come with a legacy aspect, whether
it’s calling into a home-grown DLL that can model and calculate the air speed of an
unladen swallow, or being able to leverage a forum for your website that happens to
run in PHP.

 What we’ve covered in this chapter, especially native calls and process spawning,
are great tools with great power. And with great power comes great responsibility.
Make sure you use them wisely, or you’ll spend a lot of your weekends figuring out why
your application isn’t working like you want it to.

 In our next chapter, we’ll start the conversation about how to store files in the cloud
using BLOBs. Don’t be scared; we know you’ve probably had a bad experience with
BLOBs and traditional databases. BLOBs in Windows Azure aren’t nearly as complex.

Part 4

Working with BLOB storage

Part 4 explores BLOB storage, a simple file storage system for the cloud.
Many people call file storage unstructured storage, and if you saw our desktops, you
would know why people call it that. You wouldn’t believe how hard it was in these
chapters to avoid cheesy, 1950s sci-fi references to BLOB monsters and the like.

 Chapter 8 covers BLOB basics: what they are and why you might use them.
Chapter 9 shows you how to work with BLOBs inside your applications, and chap-
ter 10 shows you how to use BLOBs from outside Azure.

 What? Yes, outside Azure. Hey, by now you should know the cloud isn’t all or
nothing; the most common use of Azure will likely be of a hybrid nature.

The basics of BLOBs
In case you didn’t bother reading the blurb at the beginning of part 3, in this chap-
ter (and the next couple of chapters), we’ll be looking at how you can store files in
Windows Azure’s highly scalable, fault tolerant, binary-file storage system (other-
wise known as the BLOB storage service).

DEFINITION BLOB stands for binary large object. The term has been stolen
from the world of relational databases where it used to describe the storage
of binary data (such as an image or an MP3 file) in a single entity. We wish
they’d used BinLob as the acronym. It more accurately describes what hap-
pens when a DBA discovers you stuck a terabyte of data in a single row of
his database.

 In this chapter, we’re going to answer the following questions:

� Why is storing files in a typical scaled-out system so hard?
� How does the BLOB storage service address typical scaling issues?

This chapter covers
� How files are currently shared in retro systems

� How Windows Azure allows us to store files
(woo hoo, go Azure)

� How to consume the BLOB storage service
155

156 CHAPTER 8 The basics of BLOBs
� How does the BLOB storage service work?
� How can you can get your tools out and start developing against it?
� How do you store BLOBs in the production system?

Before you can appreciate the beauty of the BLOB service, you need to get a little
insight into how you might solve the problem of storing files that can be accessed by
multiple servers in a scalable fashion.

8.1 Storing files in a scaled-out fashion is a pain in the NAS
Unless you have plenty of cash, you’re going to experience some pain if you try to
share files across machines. No matter what hat one of us puts on (author, presenter,
architect, developer, or computer scientist), we’re embarrassed by the following state-
ment: sharing files across machines is incredibly hard. It is; it shouldn’t be, but it is.
Decoding the genome and making robots climb stairs, that should be hard, but shar-
ing files shouldn’t be.

To contextualize the problem, let’s return to the podcast example that we introduced
in chapter 1. In that scenario, we wanted to provide a service where users could
upload podcasts that would be converted from MP3 to WMA. To support the predicted
demand, we decided to load balance the website across two servers. Because users can
upload or download a podcast from any server, a shared storage solution is required.

 Figure 8.1 shows a logical representation of two load balanced web servers access-
ing a podcast from a shared storage mechanism.

 To be honest, you don’t need to be the great-
est architect in the world to draw the solution
shown in figure 8.1. It’s pretty logical, common
sense stuff. Two web servers access a common stor-
age area.

 Now you’re thinking, “Why did they just say it’s
common sense, when before they said it was hard?
Get me another book that says it’s easy.” Well,
before you start reaching for Mavis Beacon Teaches Windows Azure, check out the follow-
ing questions. As you think about the possible answers, you might begin to see why
this is a little harder than it seems to be at first.

� Do you have enough space to store all the files you need?
� How do you add more storage capacity?

BLOB content starts in section 8.1.2

In this section, we’ll be looking at the challenges of storing files in a scalable fashion.
If you’ve had too much coffee and just can’t wait to get to some BLOB content, feel
free to skip along to section 8.1.2.

MyPodcast01.mp3

Storage

Web server 1 Web server 2

Figure 8.1 Two load balanced servers
that require access to a common
storage area to serve up MP3 files

157Storing files in a scaled-out fashion is a pain in the NAS
� If a disk crashes, where does your data go?
� Is the storage block load balanced?
� What if you lose your connection to the block? Is it redundant?
� At what point do you max out your disk, in terms of reading and writing?
� How do you evenly distribute load across all disks?

The good news is that pretty much all of these problems have been answered and
solved already. You can even implement these solutions in your traditional noncloud
environments today (well, the lead time is probably longer than a day). The bad news
is that the cheap, simple solutions are typically not scalable or fault tolerant. The solu-
tions that are scalable and durable are usually expensive. In the Windows Azure BLOB
storage service, all that changes.

 Before we look at how easy it is to store and access files (in a scalable, durable fash-
ion) across multiple servers in Windows Azure, let’s look at some of the options out-
side Windows Azure.

8.1.1 Traditional approaches to BLOB management

Over the next few sections we’ll look at how you might provide a file storage facility in
traditional ASP.NET web server farms, using our podcasting example. We’ll specifically
look at using the following storage options:

� SQL Server
� Network share
� Distributed File System (DFS)

� Network-attached storage (NAS)

� Direct-attached storage (DAS)

� Storage area network (SAN)

Let’s start with one with the typical developer solutions to the problem: the database.

SQL SERVER

Because web servers typically have access to a shared SQL Server database, you could
store your podcasts in a table. Although this is a common approach used in many solu-
tions, it’s probably not the best use of your expensive database server. It’s like racing a
truck in a Grand Prix; there are cheaper, simpler, higher performing, and more
appropriate solutions for storing files.

 Unless you’re using a high-availability technology (such as clustering, mirroring, or
replication), your database server is likely to be a single point of failure in the system.
In figure 8.1, SQL Server would be represented by the Storage block (accessed over a
typical network connection).

NETWORK SHARE

Another common approach to providing a shared filesystem across web servers is to
use a shared network drive that can be accessed by all instances of the website. This
low-cost solution is more lightweight than a database, but it still introduces a single

158 CHAPTER 8 The basics of BLOBs
point of failure. This cheapo solution offers no redundancy and provides no ability to
scale out. In figure 8.1, an application server with a network share would also be repre-
sented by the storage block.

 Now that we’ve looked at some of the lower-end solutions, let’s take a look at some
of the typical high-scale solutions that are used, starting with Distributed File Systems.

DISTRIBUTED FILE SYSTEM (DFS)

Windows Server 2003/2008 provides a technology known as DFS that allows you to cre-
ate a peer-to-peer (P2P) filesystem on your network. UNIX/Linux environments have
similar tools. If you use DFS to store podcasts, when a new podcast is uploaded, a copy
of the file is replicated to all other participating servers. Although this approach
requires no new hardware, it’s complicated to manage and adds extra performance
overhead to all servers involved.

 Figure 8.2 shows a DFS solution with a P2P network
between two web servers.

 Whenever a file is uploaded to a web server, it’s auto-
matically replicated to all other servers in the farms.
Using replication ensures that there are no single points
of failure in this solution and that the data is held on
multiple machines. In figure 8.2, Podcast01.mp3 is
uploaded to web server 1 and then replicated to web
server 2; when Podcast02.mp3 is uploaded to web server
2, it’s then replicated to web server 1.

 In figure 8.3, the web servers don’t hold the
files locally, but use a replicated file store held in
application servers. In this figure, Podcast01.mp3
was uploaded to app server 1 via web server 1.
The file was replicated to app server 2, and then
served up to the client from app server 2 via web
server 1.

 With file replication, any time a file is
uploaded to a server there’s a small delay between
the file being uploaded and it being replicated across all servers. It’s therefore possi-
ble that the web user could be load balanced onto a server where the file isn’t avail-
able (because it hasn’t been replicated across to that server yet). Although this issue
can be alleviated by using sticky sessions, sticky sessions won’t help if the original
server keels over. Also, using sticky sessions means that incoming requests won’t be
evenly distributed across all web servers.

 Now that we’ve looked at some of the hook-some-machines-together solutions,
we’ll look at some of the dedicated disk array–type solutions that are typically used in
the market.

Podcast01.mp3

Podcast02.mp3

Web server 1 Web server 2

Figure 8.2 Two web servers
reading and writing files to a
local shared disk. Files are
replicated between each server.

Podcast01.mp3

Podcast01.mp3

Web server 1 Web server 2

Application
server 1

Application
server 2

Figure 8.3 Two web servers reading and
writing files from a set of replicated file
servers

159Storing files in a scaled-out fashion is a pain in the NAS
NETWORK-ATTACHED STORAGE (NAS)

A network-attached storage device is a disk array that you can plug into your network and
that can be accessed via a network share. NAS devices are responsible for managing
the device hardware, the filesystem, and serving files, and can provide varying levels of
redundancy, depending on the device and the number of disks in the array.

 Although NAS devices reduce load from client operating systems by taking respon-
sibility for file management, they can’t scale beyond their own hardware. NAS devices
can range from being pretty cheap to very expensive, depending on the levels of scal-
ability, performance, and redundancy that you require from the device. In figure 8.1,
the NAS device would be represented by the storage block (connected via the Ethernet).

NAS devices are used to provide capabilities similar to those of a file server, rather than
being used as a disk management system in a high-performance application solution.

DIRECT-ATTACHED STORAGE (DAS)

A direct-attached storage device is a disk array that you can plug directly into the back of
your server and that can be accessed natively by the server. DAS devices are responsible
for managing the device hardware and can provide varying levels of redundancy,
depending on the device and the number of disks in the array.

 Because DAS devices are directly connected to a server, they’re treated like a local
disk; the server is responsible for the management of the filesystem. DAS devices can
support large amounts of data (100 TB or so), can be clustered (there’s no single
point of failure), and are usually high-performance systems. As such, DAS devices are a
common choice for high-performance applications. The cost of the device can range
from being pretty cheap to very expensive, depending on the levels of scalability, per-
formance, and redundancy that you require.

 Although DAS devices are great, they’re limited by the physical hardware. When
you reach the physical limits of the hardware (which is quite substantial), you’ll be
able to scale no further.

 In figure 8.1 the DAS device would be represented by the storage block, connected
directly to the servers.

STORAGE AREA NETWORK (SAN)

Like DAS devices, SANs are also separate hardware disk arrays; they don’t have their
own operating system, so file management is performed by the client operating system.

SAN devices are represented on the client operating system as virtual local hard
disks that are accessed over a fiber channel. Because you need your web servers to

Sticky sessions

A sticky session occurs when a load balancer forwards all incoming requests from
the same client to the same server for the period of the session.

160 CHAPTER 8 The basics of BLOBs
access shared data, the SAN would need to support a shared filesystem. In figure 8.1,
the SAN device would be the storage block, attached to the web servers via fiber
channels.

SANs are usually quite expensive, require specialized knowledge, and are rarely
used outside the enterprise domain. To give you a clue about how expensive they are,
Dell doesn’t even list the price on its website. As for installing and managing SANs,
that’s purely in the domain of the long-haired sandal-wearing bearded types. We
mere mortals have no chance of making those things work. SAN devices support repli-
cation and are highly scalable (they scale much higher than do DAS devices), fault
tolerant, high performing, and incredibly expensive. Due to their performance,
price, and scalability, this is the solution of choice in the enterprise space. The rest of
us can only dream.

 Hopefully we’ve justified our earlier premise that implementing a file storage solu-
tion today isn’t as easy as it first looks. All the available choices (beyond a certain size)
require extensive IT knowledge, skills, and management, not to mention large amounts
of cash or a tradeoff between capacity, redundancy, ability to scale, or performance.

 This is the state of affairs with regard to the issues with storing files in traditional
on-premises solutions. Let’s now look at the Windows Azure BLOB storage service and
how it tackles these issues.

8.1.2 The BLOB service approach to file management

As we discovered earlier, the BLOB storage service is the Windows Azure solution to
providing file storage. Let’s take a look at how Azure implements this service.

AN API-BASED SERVICE

Rather than building a native network-share-based solution, Microsoft has provided a
set of REST-based APIs that allow you to interact with all the storage services over the
HTTP stack, using a standard HTTP request. As mentioned earlier, not only can you use
these APIs inside the data center, but you can also use them outside the data center.

NOTE Although you can upload and download files outside the data center,
you’ll be subject to internet speed; it might take you a few hours to upload or
download gigabytes of data. Within the data center, you can copy gigabytes
of data between BLOB storage and a worker or web role in seconds. This mas-
sive speed difference is the result of the co-location of the storage service and
the roles.

SCALABILITY

Using HTTP as the underlying transport layer means that Windows Azure can leverage
the web role infrastructure inside Windows Azure to host the storage services. By
using the web role infrastructure to host the Windows Azure storage service (with tens
of thousands of instances), you can be confident that your application will be able
scale to that level. Figure 8.4 shows the abstraction of web instances for the BLOB stor-
age service.

161Storing files in a scaled-out fashion is a pain in the NAS
 Because BLOB storage is built on the web
role infrastructure, web roles can also harness
the advantages of utility computing. As the
demand for the storage services increases,
Microsoft can ramp up the number of
instances just like it can for any other web
role. You don’t need to worry about the scal-
ability of any of the storage services (unless
Microsoft runs out of pennies).

DISK STORAGE

Just as there are thousands of racks of machines used to host the web and worker
roles, there are just as many disk arrays storing your data! Microsoft can grow the stor-
age required in the data center by adding more disks as and when required. This level
of enterprise-class storage means that you never need to worry about capacity or scale.
Think of the BLOB service as a giant virtual hard disk that will always scale up to meet
your demands and never run out of space.

DATA CONSISTENCY WITH REPLICATION

Like the DFS solution, Windows Azure BLOB storage is also a replicated solution (to be
honest, you have to be to achieve such massive scale). Although the BLOB service is
quite similar to the Amazon Simple Storage System (Amazon S3), replication is one of
the areas in which it differs.

 With Amazon S3, there’s no consistency of data throughout the data center. If you
upload a file to Amazon S3 and then request that same file, it’s likely that a different
server will process that request. As a result of network latency, the file probably won’t
be available to the new server because the data won’t have been replicated from the
original server yet. Amazon S3 suffers from the same issues seen with DFS.

 This issue of replication latency can never occur in Windows Azure storage ser-
vices. Windows Azure guarantees a consistent view of your data across all instances
that might serve your requests. Internally, inside the Windows Azure storage services,
data is replicated throughout the data center as soon as it’s written to your storage
account. Every piece of data must be replicated at least three times as part of the com-
mit process.

 As your data is being replicated across the various disks in Windows Azure, the FC
keeps track of which instances can access the latest version of your data. The load bal-
ancer will route requests only to an instance that can access the latest version, ensur-
ing that stale data is never served.

 Even if a disk failure occurs immediately after the upload, there won’t be any data
loss; other disks are guaranteed to receive a copy of that data.

 So far we’ve talked about how BLOB storage solves the problems of scalability and
fault tolerance, but we haven’t talked about performance. Surely performance is
going to suffer; it’s effectively a REST-based web service, after all.

 Load balancer

BLOB
web role 1

BLOB
web role 2

BLOB
web role n

Client

Figure 8.4 Scaling of BLOB storage
services in Windows Azure

162 CHAPTER 8 The basics of BLOBs
PERFORMANCE

Sure, the performance of BLOB storage in comparison to SANs or DASs isn’t all that
great. Ultimately that tradeoff between performance, fault tolerance, and scalability
means that performance is lost. However, within the data center, it’s generally good
enough performance. Because the service is ultimately a load balanced web server,
you can expect 50 milliseconds to 100 milliseconds of latency between your role and
the storage service. Although the latency is poor, the network connection is fast, so
you can expect good enough performance. Sure, you wouldn’t allow an application
that needs to write to disk very quickly (for example, SQL Server) to write directly to
BLOB storage, but not all applications need that kind of speed.

 If you do need that level of speed, you can always cache files locally on your role
using local storage. This technique will usually give you more acceptable performance
for your application. In fact, this is exactly what the Azure Drive (originally called X-
Drive) feature uses to ensure performance.

Now that we’ve looked at how BLOB storage handles the issues that arise in traditional
on-premises solutions, it’s worth looking at BLOB storage from a data management
perspective.

MANAGEMENT

One of the most compelling arguments for using the Windows Azure storage services
is that IT professional management skills aren’t required. In traditional systems, a
large investment in IT management skills is usually needed to support storage. Man-
agement of the storage arrays usually requires expensive specialists who are capable of
supporting the data, such as SAN experts, network specialists, technicians, administra-
tors, and DBAs.

 To plan such a system, these experts need to be able to design and implement the
infrastructure, taking disk management, fault tolerance, networking, lights-out opera-
tion, and data distribution into consideration. The day-to-day running of the system

What’s Azure Drive?

Although the REST API is flexible and provides great scale, it’s no substitute for a good
old filesystem. To make life a little easier for those bits of code that are used to talk
to directories and files rather than to a web service, Microsoft has provided a new
feature called Azure Drive. Azure Drive allows you to mount BLOB storage as a New
Technology File System (NTFS) drive, which lets you access BLOB storage just like any
other drive. Because this feature is implemented using a special OS driver that was
developed specifically for Windows Azure, this feature is only available to your roles;
it’s not available outside the data center.

As cool as Azure Drive is, it allows only one instance of a role to read and write to the
Azure Drive. Multiple role instances can mount the same Azure Drive, but only in a
read-only mode, and only against a snapshot of the drive itself.

163A closer look at the BLOB storage service
includes hardware replacement, managing backups, optimizing infrastructure, health
monitoring, and data cleansing, among other endless tasks.

 With Windows Azure, you can let Microsoft manage the storage systems and con-
centrate on using the system via familiar developer APIs. You can focus on your core
skill set, which is building software.

8.2 A closer look at the BLOB storage service
You have an idea how the BLOB storage service is hosted in Windows Azure. Let’s look
at how files are stored in the service. In this section, we’ll look at the three layers of
BLOB storage:

� The account
� The container
� The BLOB

To help explain these concepts, we’ll
use figure 8.5 as a reference. Figure 8.5
shows how an MP3 file might be stored
in BLOB storage.

 Before we get all technical about
accounts, containers, and BLOBs, keep
this in mind: an account is simply your account. Dave has an account, Jim has an
account, and you have an account. An account is about ownership. A container is
somewhere you can store your BLOBs. Containers are about access control (public or
private access) and some level of organization.

 With that in mind, let’s look at some of the specifics.

8.2.1 Accessing the BLOB (file)

In figure 8.5, you can see how files (otherwise known as BLOBs) are stored in BLOB stor-
age. The BLOB Podcast01.wma resides in the container ChrisConverted, which resides
in the storage account silverlightukstorage. A BLOB can’t directly reside in a storage
account and must live in a storage container. If you do need to make the BLOB available
as if it’s at the top level of the account (as if it doesn’t have a container), you can store
the BLOB in the root container; we’ll explain this in more detail in chapter 10.

 Because storage services use a REST-based architecture, you can retrieve a file from
BLOB storage by performing an HTTP GET request to the URI for the BLOB. The fol-
lowing URI would let you retrieve Podcast01.wma from the ChrisConverted container
(held in the silverlightukstorage storage account) from the live BLOB storage service:
http://silverlightukstorage.blob.core.windows.net/ChrisConverted/Podcast01.wma.

 We could formalize the URI for the live storage account as follows: http://<storage-
Account>.blob.core.windows.net/<Container>/<BlobName>.

 Let’s now take a closer look at accounts, containers, and BLOBs to get a clearer
understanding of these components.

Account name

Account

Container name
Container

Blob

silverlightukstorage

ChrisOriginals ChrisConverted

Podcast01.mp3

Podcast02.mp3

Podcast01.wma

Podcast02.wma

Figure 8.5 Podcast01.mp3 is stored in the
ChrisOriginals container in the silverlightukstorage
account

164 CHAPTER 8 The basics of BLOBs
8.2.2 Setting up a storage account

When you sign up for Windows Azure, you can create a storage account in the Azure
portal. The storage account is the top level for all storage services (BLOBs, queues,
and tables) that reside under it.

 When you create your storage account, you’ll be assigned a subdomain for each
storage service. The following three domains are for the storage services:

� http://<storageAccountName>.blob.core.windows.net/
� http://<storageAccountName>.queue.core.windows.net/
� http://<storageAccountName>.table.core.windows.net/

In our previous example, the name of the storage account was silverlightukstorage,
which means that the top-level URI for each service in our account would be as follows:

� http://silverlightukstorage.blob.core.windows.net/
� http://silverlightukstorage.queue.core.windows.net/
� http://silverlightukstorage.table.core.windows.net/

For now we’re going to focus on the BLOB service, but in later chapters we’ll return to
the Table service and the Message Queue service.

If you don’t like the beautiful subdomain assigned to you for BLOB storage
(xxxxx.blob.core.windows.net) then you can always assign your own domain name.

8.2.3 Registering custom domain names

What we’ll do now is step through the process of associating your own domain name
with the BLOB storage service. You’ll be able to access your WMA file using this URI:
http://blobs.chrishayuk.com/ChrisConverted/Podcast01.wma.

 To register a custom domain name with a BLOB storage account, you have to do
the following:

1 Register a suitable domain with your domain provider.
2 Set up a domain to point at Windows Azure.
3 Validate that you own the domain.
4 Set up the subdomain to point at BLOB storage.

How do you break up your storage accounts?

There are a couple of things to consider about your storage account, the major one
being this: do you have one large account, or a separate account for each application?
Although this is ultimately up to you, a good guide would be access control. If you’re
a small shop, then one overall account is probably suitable; however, a single account
wouldn’t work so well in, say, Microsoft or IBM. In these larger organizations, separating
by application is probably a more suitable approach.

165A closer look at the BLOB storage service
We’re going to skip the registering a suitable domain step. If you don’t know how to
do that, then I’m sure GoDaddy (or some other provider) will happily provide some
instructions so they can extract some lovely dollar bills (or British Pounds, or Euro
Euros) from your pocket.

SET UP A SUITABLE DOMAIN

After you’ve registered your domain (for example, chrishayuk.com), you need to let
Windows Azure know that you want to point a suitable subdomain at it. To do that, log
in to the Azure portal. Select your storage account (silverlightukstorage), and then
click the Manage Domains button. You’ll be faced with the page shown in figure 8.6.

 After you’ve entered the name of the domain (including the subdomain) that you
want to point to the BLOB storage account, you need to validate the domain.

VALIDATING THAT YOU OWN THE DOMAIN

Validate the domain by clicking the Generate Key button. After you click the button,
you’ll be presented with the screen shown in figure 8.7.

Figure 8.6 Validating
in the Azure portal that
you’re the owner of the
domain that you want
to point to the BLOB
storage account

Figure 8.7 Receiving
the domain validation
CNAME GUID

166 CHAPTER 8 The basics of BLOBs
The window in figure 8.7 indicates that you need to perform two actions:

� Add a new CNAME for the GUID (fb160. . .) that points to verify.windowsazure.
com.

� Add a new CNAME for the subdomain (blobs.chrishayuk.com) that points to
your BLOB storage account (silverlightukstorage.blob.core.windows.net).

Whichever company you used to register your domain probably manages the DNS for
your domain name. Using their web control panel, you should be able to create the
subdomain using a CNAME. Figure 8.8 shows the CNAMEs for chrishayuk.com in the
GoDaddy Domain Manager.

 If you manage your own DNS server, you already know how to set up a CNAME; if
not, your system administrator will certainly be able to (although he might not be very
pleased that you’re looking to replace him with an automated system).

 After you’ve set up your CNAMEs, return to the Windows Azure portal a little later
to validate the domain (click the Validate button shown in figure 8.7). As soon as the
domain has been validated, you’ll be able to use your custom domain name.

 Why do you need to come back later? Funnily enough, this is all to do with replica-
tion. After you’ve updated the DNS details on the server that’s responsible for main-
taining your domain records, this update needs to be replicated to all the other DNS
servers in the world. This replication delay is the reason that you’ll have to come back
later (usually 10 minutes to an hour); it’ll take a little time for the Windows Azure DNS
servers to receive that update. Perhaps the world’s DNS servers should use Windows
Azure instead.

OK, you’ve got your custom domains set up and you understand containers; let’s
look at how you can use them to store BLOBs.

8.2.4 Using containers to store BLOBs

In BLOB storage, you can’t store BLOBs directly in a storage account because every
BLOB must live in a container. A container is really a top-level folder. Although you can
set permissions directly on a BLOB, this can be a pain with a large number of BLOBs. To
alleviate that administrative headache, you might want to group similar BLOBs that

Figure 8.8 The CNAME entries for chrishayuk.com; notice that both the domain verification CNAME
and the BLOB storage CNAME are listed

167Getting started with development storage
have similar access levels in the same container. Then you can set permissions at the
container level rather than at the individual BLOB level.

 In BLOB storage, there are two levels of access that you can set on a container: pri-
vate and public.

PRIVATE CONTAINERS

BLOBs in a private container are restricted to the owner of the account. If you need to
list the contents or download a BLOB stored in a private container, you need to make
a request signed with your shared authentication key (in the next chapter we’ll show
you how to do this).

 In figure 8.5, the container ChrisOriginals is a private container. If you wanted to
access the BLOB podcast01.mp3, you would make a GET request to the following URI
(this request must be signed with either your account master key or a pregenerated
shared key; we’ll explain this later): http://silverlightukstorage.blob.core.windows.
net/ChrisOriginals/Podcast01.mp3.

FULL PUBLIC READ ACCESS AND PUBLIC READ-ONLY ACCESS FOR BLOBS

If the container is set to full public read access, then you can retrieve any BLOB held
in the container over HTTP without providing authentication credentials. Not only
that, you can list all the BLOBs in that container and query data about the container.

 With public read-only access for BLOBs, anonymous requests will only be able to read
a BLOB (you won’t be able to read container data or list the BLOBs in the container).

 In figure 8.8, the container ChrisConverted is a public container; anyone on the inter-
net would be able to download the file podcast01.wma by making an HTTP GET request
to http://silverlightukstorage.blob.core.windows.net/ChrisConverted/Podcast01.wma.

 If you need to perform any operations beyond the container permission level (for
example, if you need to upload or modify a BLOB), you need to provide authentica-
tion credentials (account owner or shared access) because these operations are
restricted operations.

 So far we’ve talked only about the live BLOB storage service. Now we’ll take some
time to look at how you can develop against the BLOB storage service by using a devel-
opment version of the BLOB service that’s in the development storage service.

8.3 Getting started with development storage
Development storage hosts all three storage services (BLOB, Queue, and Table storage
services) and exposes local endpoints that implement the same APIs as the live service.
The production version of the storage services and the development version are two
completely different animals. They might expose the same APIs, but the development
version is greatly simplified and suitable only for local development.

 When you’ve finished developing your application against your local develop-
ment storage, you can easily switch to using the live environment by just changing
configuration.

http://silverlightukstorage.blob.core.windows.net/ChrisOriginals/Podcast01.mp3

168 CHAPTER 8 The basics of BLOBs
8.3.1 SQL Server backing store

Because the development environments and the data centers of Windows Azure are
drastically different (we don’t have replicated storage arrays on laptops), the SDK can
provide only a simulation of the live storage environment. Although development
storage and BLOB storage are API–compatible, the underlying implementations are
understandably different.

 In the development storage version of BLOB storage, SQL Server is used as the
backing store.

If you want, you can even run
queries against the database
to ensure that your data is
stored as you expected. Fig-
ure 8.9 shows all the tables
representing the various stor-
age services in the SQL Server
implementation.

 Although the develop-
ment storage system uses SQL
Server (as shown in figure
8.9), the real BLOB storage
system uses a higher per-
forming, more scalable, cus-
tom solution that makes the
best use of the Windows Azure infrastructure. You can be assured that your BLOBs
aren’t stored in some SQL Server table in the live system.

8.3.2 Getting around in the development storage UI

The development storage service is automatically started whenever you run a web or
worker role project in Visual Studio. The startup of development storage occurs at the
same time as the startup of the development fabric, as described in chapter 2. If you

Installation issues

By default, the development storage database is created in the SQLEXPRESS named
instance of SQL Server on your development machine. This instance is normally in-
stalled as part of the Visual Studio installation, which is why the SDK assumes that
this instance is present. If you need or want to install the database onto a different
SQL Server instance, you can use a tool in the SDK called DSInit.exe. You might want
to do this if you prefer to run a full-blown version of SQL Server on your machine or if
you skipped installing the SQLEXPRESS instance during the Visual Studio installation.

Figure 8.9 Development storage database in SQL Server

169Developing against containers
right-click the Cloud Services icon in the status bar and select Show Development
Storage UI, the Development Storage UI is displayed, as shown in figure 8.10.

 The development storage UI shows you the current status of your services and lets
you stop and start them if you need to. Although development storage and the devel-
opment storage UI are automatically launched when you run your application in
Visual Studio, you can start them manually using the command line. This can be use-
ful if you’re interacting with the storage services from an application that’s not hosted
in the cloud (a normal WPF application that just uses the BLOB storage service).

With the basics of both BLOB storage and development storage under your belt, get
ready! It’s time to write your first application that talks to the BLOB service.

8.4 Developing against containers
Before we start writing some code against the containers, we should probably discuss
where this type of functionality is useful.

 If you just need a shared storage area where you can read BLOBs, you’ll probably
eventually use the Azure Drive functionality (discussed in chapter 10) rather than
interacting with the BLOB storage APIs directly. Even so, it’s still useful to understand
how the BLOB storage APIs work, because Azure Drive interacts with these APIs too.

 If you need a scalable application in which more than one role needs to write to a
single shared storage area, then you’ll need to use the StorageClient library or the
REST APIs directly.

 Over the next few sections, we’ll be looking at the kinds of operations you can per-
form against containers. Using containers is particularly interesting when you need to
dynamically create storage areas and assign permissions to different parties in a scalable

Starting and shutting down development storage manually

To start development storage manually, you can use the following command:

C:\Program Files\Windows Azure SDK\v1.1\bin\devstore\dsservice.exe

To shut down the service, you can use this command:

C:\Program Files\Windows Azure SDK\v1.1\bin\devstore\dsservice.exe/shutdown

Figure 8.10 Devel-
opment storage
command and
control center. You
can start, stop, and
mess around with all
your storage
services from here.

170 CHAPTER 8 The basics of BLOBs
fashion. Typical scenarios for using containers are file hosting, enterprise workflows,
and data manipulation applications that need to access data. In the next chapter, we’ll
look at how you can use containers in these kinds of scenarios by generating dynamic
keys; we’ll also talk about setting permissions on containers.

 For now, we’ll return to our podcast example. You need a method of creating pub-
lic and private containers to store your original and converted podcasts in. In this sam-
ple application, you’ll create an ASP.NET web form page in which to do that. Your final
application will look like the screenshot displayed in figure 8.11.

 Over the next few sections we’ll look at the following topics, which will help you
build the web page displayed in figure 8.11:

� Working with the StorageClient library (which is included in the Windows
Azure SDK)

� Accessing the development storage account
� Creating a container
� Listing containers
� Deleting a container

By the end of this section, you’ll have created the above web page and you’ll have a
vast knowledge of containers.

 Before we get started, you need to create a new web role project in Visual Studio
(as described in chapter 1). You should call this web role PodcastSample.

8.4.1 Accessing the StorageClient library

There are two ways of interacting with any of the storage services: you can either use
the REST API directly or you can use the StorageClient library API. In this book, we’re
going to look at both methods.

 One of the reasons that we’ll look at both methods is that the StorageClient library
is just a .NET wrapper for the REST API. For new features, Microsoft will often release
the REST API call before adding the feature to the StorageClient library. By under-
standing both methods of interaction, you’ll be able to use any new feature immedi-
ately (if you need to).

Figure 8.11 When you’ve finished this section, you’ll have an application that can display a list of
containers in your storage account using ASP.NET.

171Developing against containers
 Another reason for looking at the REST API is that the underlying mechanism is
heavily abstracted away from you. By understanding the underlying calls, you can
make the best decisions architecturally for your application (especially regarding per-
formance).

 Now you might be thinking, “If the REST API is so great, why are we using the Stor-
ageClient library?” The answer to that is quite simple: as flexible as the REST API is to
use, it’s one huge pain. Using the REST API directly means we get to write unreadable
code; HttpWebRequest code with no IntelliSense support. By using the StorageClient
library wherever possible, we get to write familiar .NET code (with IntelliSense sup-
port), which increases productivity. We can ultimately spend more time doing more
important things (like browsing the internet or playing Halo).

 Although the StorageClient library (Microsoft.WindowsAzure.StorageClient.dll) is
automatically referenced in any new web or worker role projects that you create, you can
add the reference manually if you need to. You can find the reference at C:\Program
Files\Windows Azure SDK\v1.1\ref\.

 You don’t need to add this assembly to your project; it’s already referenced. But when
you’re building your own code, you’ll probably want to split your code into proper lay-
ers. If you do that, you’ll need to add the assembly to your own custom assembly.

 Now that you know how to reference your assembly, let’s look at how you configure
the StorageClient library to access your development storage account.

8.4.2 Accessing development storage

To use development storage for storing BLOBs, you need to configure your applica-
tion to use the development BLOB service in the same way as you would if it were the
live system.

 There are two ways to tell your code to connect to the local development storage.
The first is to use a magic string as your connection string. If you set your connection
string to UseDevelopmentStorage=true, the development storage fabric will respond
to the connections. You can also put in the real development storage fabric connec-
tion. The format of the connection string for development storage will look a lot like a
production connection string. The following parts are all that’s different:

� Account name—The only account name that’s supported for development stor-
age is the default name, devstoreaccount1.

� Account shared key—The default name for this value is this:
Eby8vdM02xNOcqFlqUwJPLlmEtlCDXJ1OUzFT50u

➥ SRZ6IFsuFq2UVErCz4I6tq/K1SZFPTOtr/KBHBeksoGMGw==

� Endpoint—The BLOB storage endpoint for development storage BLOB services
is by default 127.0.0.1:10000. To access the BLOB file in the example in section
8.2.1 from the development storage BLOB service, you would use the following
URI: http://127.0.0.1:10000/devstoreaccount1/ChrisConverted/Podcast01.wma.
This URI can be formalized as http://127.0.0.1:10000/<StorageAccountName>/
<Container>/<BlobName>.

172 CHAPTER 8 The basics of BLOBs
You can change the default values for each of these items in the DSService.exe.config
file, but it’s recommended that you use the default values.

 In development storage, there’s no ability to create or host multiple storage
accounts and there’s no Azure portal, so you can’t easily generate a new key. The end-
points and URI structure also differ from the live system.

 With that knowledge in hand, let’s look at how you can use this information to
access your account in code.

STORING ACCOUNT DETAILS IN THE SERVICE CONFIGURATION FILE

To make things a little easier, the Windows Azure SDK provides a property that will
spin up a CloudStorageAccount object with the default development storage settings:

CloudStorageAccount = CloudStorageAccount.DevelopmentStorageAccount;

Although this is probably the quickest method of getting started, it isn’t best practice.
Starting this way, you’re effectively hardcoding your application to your development
account. You’d have to modify and recompile your code before you could deploy
your application to the live system, which can complicate your build process and
introduce bugs.

 The best practice for storing this information is to store the data in the service con-
figuration file, which gives you the option to change this information without rede-
ploying the whole application. For example, if your shared key is compromised, then
you would be able to generate a new shared key and modify your application to use
the new key by simply changing the service configuration via the Azure portal.

 To help you easily use the ServiceConfiguration.cscfg file to store your account
details, the StorageClient library provides a method that can extract the account
name, shared key, and endpoint from a configuration setting. The following call is
used by the library to extract these values:

CloudStorageAccount =
 CloudStorageAccount.FromConfigurationSetting(“DataConnectionString”);

In the above example, your account details will be extracted from a configuration set-
ting named DataConnectionString.

 Although this code is specific to the StorageClient library, you should still store the
account details in the service configuration file, even if you’re using the REST API
directly. Storing the details there will simplify and standardize your code and allow you
to easily use both the StorageClient library and the REST API directly within your appli-
cation (you don’t want to have to modify two different settings to access your account).

 Now that you know how easy it is to extract an account from your configuration,
let’s look at how you define that configuration setting.

DEFINING CONFIGURATION SETTINGS

As explained in chapter 4, you’ll first need to define your configuration settings in the
service definition file before you can configure them. The following setting is the stan-
dard method of defining your storage account in your service definition file.

173Developing against containers
<ConfigurationSettings>
 <Setting name="DataConnectionString"/>
</ConfigurationSettings>

Notice in this code that DataConnectionString is the same name that was passed to
the FromConfigurationSetting method to extract the account name, shared key, and
endpoint values.

COMMUNICATING WITH DEVELOPMENT STORAGE

After you’ve defined the configuration settings, you can set the runtime values in your
service configuration file. The following configuration settings are the defaults used
to talk to development storage:

<ConfigurationSettings>
 <Setting name="DataConnectionString"
 value="UseDevelopmentStorage=true" />
</ConfigurationSettings>

By setting the value of DataConnectionString to UseDevelopmentStorage=true,
you’re effectively telling the storage client to extract your settings from the DSSer-
vice.exe.config file, which gives you the same result as using the DevelopmentStor-
ageAccount property.

 The advantage of using the FromConfigurationSetting method over the Devel-
opmentStorageAccount property is that you can modify the service configuration file
to use the live account details (shown later in this chapter) without having to recom-
pile or redeploy your application.

 Now that your application is configured to use development storage via the Stor-
ageClient library, you can continue on and create your web page.

8.4.3 Creating a container

Now you’re going to create the web page shown in figure 8.11. In your podcast sample
web role project, create a new ASPX page called containers.aspx.

 At this stage, you only want to write the code that will create your container; you
don’t need to see the list of containers. At present, your UI needs to display only the
new container name text box and the Create Container button.

 The following listing shows the ASPX required for the create-container section of
the page.

<div>
 <div>
 Name: <asp:TextBox ID="txtContainerName" runat="server" />
</div>
<div>
 <asp:Button ID="btnCreate" runat="server"
 Text="Create" OnClick="btnCreate_Click" />
</div>
</div>

Listing 8.1 ASPX for creating a container

Name of
the container
to create

Creates
the button

174 CHAPTER 8 The basics of BLOBs
You’ve defined your UI. Now you need to create the code that handles the button click.
See the following listing, which contains the code-behind for the create button click event.

protected void btnCreate_Click(object sender, EventArgs e)
{
 CloudStorageAccount account =
 CloudStorageAccount.FromConfigurationSetting("DataConnectionString");

 CloudBlobClient blobClient =
 account.CreateCloudBlobClient();

 CloudBlobContainer container =
 blobClient.GetContainerReference(txtContainerName.Text.ToLower());

 container.Create();
}

Before we explain this code, we want to remind you of its purpose. The user will type
in the new container name and then click the button to create the new container.
Now let’s look at the code.

STORAGE ACCOUNT

The first thing you need to do is retrieve an object that allows you to work with the
BLOB storage account. Using the CloudStorageAccount object that you used earlier
to extract your credentials, you can now instantiate a CloudBlobClient object that will
allow you to mess with things at an account level by issuing the following call:

CloudBlobClient blobClient =
 account.CreateCloudBlobClient();

After you’ve retrieved the CloudBlobClient object, you can perform the following
operations at an account level on BLOB storage:

� Return a list of all containers in the account (ListContainers)
� Get a specific container (GetContainerReference)
� List BLOBs (ListBlobsWithPrefix)
� Get a specific BLOB (GetBlobReference)

As well as performing these operations, you can also set some general policies, includ-
ing the following ones:

� Block sizes
� Retry policy
� Timeout
� Number of parallel threads

In this example, because you’re creating a new container, you need to grab a refer-
ence to the container that you want to create. Use the GetContainerReference
method, passing in the name of your new container:

CloudBlobContainer container =
 blobClient.GetContainerReference(txtContainerName.Text.ToLower());

Listing 8.2 Creating a new container

Creates
the BLOB client

Gets reference
to container

Creates
container

175Developing against containers
In this example, you’re setting the container name to whatever the user types in the
text box.

NOTE The name of the container is converted to lowercase because the BLOB
storage service doesn’t allow uppercase characters in the container name.

So far you’ve just set up the container you want to create; you haven’t made any com-
munication with the storage service. The CloudBlobContainer object that has been
returned by GetContainerReference can perform the following operations:

� Create a container (Create)
� Delete a container (Delete)
� Get and set any custom metadata you want to associate with the container
� Get properties associated with the container (for example, ETag and last modi-

fied time)
� Get and set container permissions
� List BLOBs (ListBlobs)
� Get a specific BLOB

Now make a call to create the container:

container.Create();

As soon as you call the Create method, the storage client generates an HTTP request
to the BLOB storage service, requesting that the container be created.

You should now be able to run your web role and create some containers in your
development storage account. At this point, you won’t be able to see the containers
that you’ve created in your web page, but you can check that they’re there by running
a SQL query against the BlobContainer table in the development storage database.

 Now that you can create a container from your web page, you need to modify the
page so that you can display all the containers in your storage account.

8.4.4 Listing containers

In the figure 8.11, there’s a grid that contains a list of all the containers in the
account. To create that grid, you need to update your asp.net page to include an
ASP.NET GridView component (you’re going to eventually bind this grid to a list of

Default permissions

In the Create container call, you didn’t specify any permissions on the container to
be created. By default, a container is created as private access only, meaning that
only the account owner can access the container or any of the BLOBs contained within
it. In the next chapter, we’ll look at how you can set permissions on containers and
BLOBs.

176 CHAPTER 8 The basics of BLOBs
containers). You should place the code in the following listing before the code in list-
ing 8.1 in the containers.aspx page.

<asp:GridView ID="gvContainers" runat="server"
 AutoGenerateColumns="true"
 onrowcommand="gvContainers_RowCommand"
 onrowdeleting="gvContainers_RowDeleting">
 <Columns>
 <asp:TemplateField>
 <ItemTemplate>
 <asp:LinkButton ID="btnDelete" runat="server"
 Text="Delete"
 CommandName="Delete"
 CommandArgument='<%#Eval("Name")%>'/>
 </ItemTemplate>
 </asp:TemplateField>
 <asp:HyperLinkField Text="View"
 DataNavigateUrlFields="Name"
 DataNavigateUrlFormatString="Blobs.aspx?Container={0}" />
 </Columns>
</asp:GridView>

The code in listing 8.3 is the ASP.NET markup for figure 8.11. Notice that you’re allow-
ing the grid to autogenerate all the columns (except the Delete button and the View
hyperlink) based on the properties of the object bound to the grid. Listing 8.4 shows
the code-behind for your web page that gets a list of containers from the account and
binds it to the grid.

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 CloudStorageAccount.SetConfigurationSettingPublisher(
 ➥ (configName, configSetter) =>
 {
 configSetter(RoleEnvironment
 ➥ .GetConfigurationSettingValue(configName));
 });
 BindGrid();
}
}

private void BindGrid()
{
 CloudStorageAccount account =
 CloudStorageAccount.FromConfigurationSetting("DataConnectionString");

 CloudBlobClient blobClient =
 account.CreateCloudBlobClient();

Listing 8.3 Listing BLOBs with a GridView

Listing 8.4 Binding the grid

Autogenerates columns in
grid from bound object

Deletes
container

Hyperlink for page
listing BLOBs

177Developing against containers
gvContainers.DataSource =
 blobClient.ListContainers();

gvContainers.DataBind();
}

One interesting thing you’ll see in the Page_Load method is a call to SetConfigura-
tionSettingPublisher. We wouldn’t normally put this code here, but it was the easi-
est place to put it in the book. When you load configuration in ASP.NET, it looks in the
web.config file by default. If you’re storing your configuration in the .csdef file,
ASP.NET will never find it. By including this line of code, you’re telling ASP.NET to look
in the .cscfg file for the configuration you’re trying to load. We would normally put
this in the Role_OnStart event, or somewhere else where it’ll be run once per role
instance as it starts up.

 Now you have a web page that will display all the containers in your storage
account. The page also allows you to create new private containers. To complete your
sample, you just need to implement the delete functionality.

8.4.5 Deleting a container

You want to be able to click the Delete button on a particular row in your web page to
delete the underlying container. For this to happen, you need to hook in your Delete
button. The following listing shows the code-behind for implementing the delete
functionality.

protected void gvContainers_RowCommand
 (object sender, GridViewCommandEventArgs e)
{
 if (e.CommandName == "Delete")
 {
 DeleteContainer(e.CommandArgument.ToString());
 }

 BindGrid();
}

private void DeleteContainer(string containerName)
{
 CloudStorageAccount account =
 CloudStorageAccount.FromConfigurationSetting
 ➥ ("DataConnectionString");

 CloudBlobClient blobClient =
 account.CreateCloudBlobClient();

 CloudBlobContainer container =
 blobClient.GetContainerReference(containerName);

 container.Delete();
}

Listing 8.5 Deleting the container

Sets grid data source as list
of containers in account

Binds data grid
to its data source

Calls DeleteContainer
method on receiving
Delete command

Gets container from
BLOB account

Deletes container

178 CHAPTER 8 The basics of BLOBs
protected void gvContainers_RowDeleting(object sender,
➥ GridViewDeleteEventArgs e)
{

}

With the Delete button code hooked in, you should be able to run your application
and view all the BLOB containers in development storage, add a container, and then
delete it from your web page.

 Wow, you’ve done a great job. You’ve just completed your first Windows Azure
BLOB storage application. All that’s left is to make this baby work against the live BLOB
storage service.

8.5 Configuring your application to work against the live service
To switch your application from the development storage to the live storage account,
you need to create a live storage account and switch your configuration to it. In this
section, we won’t go through the process of creating a storage account; it’s pretty sim-
ple and the information you require is available in this chapter. We’re going to focus
on configuring your application to work against your live storage account.

8.5.1 Switching to the live storage account

To make your application work against the live system, all you need to do is modify the
value of your configuration setting in the service configuration file. That’s it, the end,
nothing else to do. If you remember earlier, you set your storage account configura-
tion setting to the following:

<Setting name="DataConnectionString"
 value="UseDevelopmentStorage=true" />

Although this is great for the development storage, it doesn’t give you a clue to the
structure of the setting for when you want to use the live system. The following setting
shows how the string should be structured.

<Setting name="DataConnectionString"
 value="DefaultEndpointsProtocol=protocol;
 AccountName=storageaccountname;
 AccountKey=storageaccountkey" />

Always set affinity for your storage account

During the process of creating your storage account, always set affinity, as described
in chapter 2 when we discussed the Azure portal. If you don’t set affinity, it’s possible
that your web role might be hosted in Washington State, but your storage account is
hosted in Chicago. The latency caused by cross-data-center communication will harm
the performance of your application. To gain maximum performance, always set affinity
on your web roles, worker roles, and storage accounts to the same data center; this
ensures that you achieve the best possible network latency.

Empties RowDeleting
handler to avoid
exceptions

179Configuring your application to work against the live service
To make this run against the live system, plug in the appropriate values:

<Setting name="DataConnectionString"
 value="DefaultEndpointsProtocol=http;
 AccountName=silverlightukstorage;
 AccountKey=Eby8vdM02xNOcqFlqUwJPLlmEtlCDX
 ➥ J1OUzFT50uSRZ6IFsuFq2UVErCz4I6tq/K1SZFPTOtr/KBHBeksoGMGw==
" />

Now that you’ve configured the live settings, you can use the live BLOB storage system
either from the development fabric or from the live production fabric. The only thing
left to do is to configure the access key.

8.5.2 Configuring the access key

If you’re unsure where you get the account key for the storage account, you can always
refer to the Azure portal. When a new storage account is created in Windows Azure, a
primary and secondary access key is generated for you to secure your API requests.
The access key for your live account is used by all storage services and is available from
the storage account section of the portal. Figure 8.12 shows the window in which you
can retrieve your access key. When you retrieve this key, it replaces the development
key held in the service configuration file.

 If your access key is compromised at any point, you can generate a new key by click-
ing the Regenerate button shown in figure 8.12. After a new key has been generated,
you’ll need to update the key in the service configuration for your application. You
also have two keys that are valid at one point in time. Both keys are identical in what
they allow the user to do with them. Having two keys is a great way to provide rolling
key updates without any downtime in your system.

Figure 8.12 Access key in the Azure portal

180 CHAPTER 8 The basics of BLOBs
8.6 Summary
In this chapter, we provided a quick overview of the sorts of problems that you would
normally face when trying to provide a shared storage solution in a traditional web
farm. Sharing files between multiple servers isn’t easy, but Windows Azure provides a
neat mechanism that lets you forget about those worries. After a brief introduction to
storage services, we showed you how BLOB storage fits into the overall architecture.

 Then we jumped right into developing your first application, using the BLOB stor-
age service. First, we used the StorageClient library supplied in the SDK to hit the
development environment; then we changed the configuration so it could work
against the live production system.

 Now you have an appreciation of how easy it is to get started with BLOB storage
and containers. Next we’re going to look at how to use the APIs that work with BLOB
files themselves.

Uploading and
downloading BLOBs
In the previous chapter, we showed you how to get started with BLOB storage devel-
opment using the StorageClient library, with a focus on managing accounts and
containers. In this chapter, we’re going to look at the underlying REST API for the
BLOB service and how to manage BLOBs using the StorageClient library.

9.1 Using the REST API
So far we’ve only used the StorageClient sample library in the SDK and have
ignored the REST API. The reason for this is that, as a developer, you’re unlikely to

This chapter covers
� Uploading files

� Downloading files

� Serving files from BLOB storage using an HTTP
handler

� Improving performance using local storage

� Using custom metadata

� Blob storage shared access
181

182 CHAPTER 9 Uploading and downloading BLOBs
be writing code directly against the REST API. In general, you’ll prefer to use a more
object-oriented structure that uses familiar-looking .NET classes.

 The StorageClient library is useful but it’s only a wrapper implementation of the
REST API (which is the only official API). So although you’ll mainly be working against
the StorageClient library, there are some instances when you might need to use the
REST API directly.

 Windows Azure is an evolving platform and the Windows Azure team typically
releases new features exposed via the REST API first. At a later date, they might provide
an update to the SDK. If there’s a new feature that you badly need to use, you might
not have the luxury of waiting for the SDK update.

 Another reason that you might need to use the REST API directly is that not all fea-
tures are implemented (or implemented in the way you might expect) in the SDK; you
might need to drop down to the REST API to use that feature. Rather than showing
you every single feature with the REST API, we’ll try to show you the important parts:
how to list BLOBs in a public container and how to authenticate private requests using
the REST API.

9.1.1 Listing BLOBs in a public container using REST

In this example, you’re going create a small console application that’ll return a list of
all the BLOBs in a public container using the REST API. To do that, let’s return to the
funky little podcasting conversion sample that we were developing in the previous chap-
ter. In that application, let’s assume that you’ve converted a bunch of MP3s to WMA, and
now you want to list all the converted podcasts. In the console application that you’re
going to develop, all the BLOBs stored in the ChrisConverted public container (which
holds the WMA files) are going to be returned from the silverlightsukstorage BLOB ser-
vice account in the live production system. Figure 9.1 shows the information that’s
returned from the request within your console application. This XML output shows that
this container contains a single .wma file called mi2limpbiskit.wma.

Figure 9.1 Console application that returns a list of BLOBs from a public container, using REST

183Using the REST API
To create the code that returns this output, create a new console application in Visual
Studio and replace the existing static main method with the code in the following listing.

static void Main(string[] args)
{
 HttpWebRequest hwr =
 CreateHttpRequest(new Uri(@"http://

silverlightukstorage.blob.core.windows.net/
 ➥ chrisconverted?restype=container&comp=list"),
 ➥ "GET", new TimeSpan(0, 0, 30));

 using (StreamReader sr =
 new StreamReader(hwr.GetResponse().GetResponseStream()))
 {
 XDocument myDocument = XDocument.Parse(sr.ReadToEnd());

 Console.Write(myDocument.ToString());
 }

 Console.ReadKey();
}

private static HttpWebRequest CreateHttpRequest(
➥ Uri uri, string httpMethod, TimeSpan timeout)
{
 HttpWebRequest request = (HttpWebRequest)HttpWebRequest.Create(uri);
request.Timeout = (int)timeout.TotalMilliseconds;
request.ReadWriteTimeout = (int)timeout.TotalMilliseconds;
request.Method = httpMethod;
request.ContentLength = 0;
request.Headers.Add("x-ms-date",
 DateTime.UtcNow.ToString("R", CultureInfo.InvariantCulture));
request.Headers.Add("x-ms-version", "2009-09-19");
 return request;
}

Wow, that’s quite a bit of code. All it really does is list the BLOBs in a public container
and output the result to the console (as shown in figure 9.1). Unfortunately, whenever
you use the REST API directly, your code will get more complex. (I guess you can see
why we prefer to use the StorageClient library.)

 Remember that the HTTP requests that were generated by the code in listing 9.1
are the same requests that the StorageClient library generates on your behalf.

 In listing 9.1, the GET request is created at q. This verb indicates that you want
some data returned from the server rather than have an action performed that’ll
update the data (such as a create, update, or delete). The request is executed at w.

 Let’s now take a deeper look at the rest of the code in listing 9.1; doing so will give
you a better understanding of the communication between your clients and the stor-
age accounts.

Listing 9.1 Listing the BLOBs in a container via REST

q Sets up the request with
correct destination URI

w
Gets stream

that represents
results returned

from GET

e Adds correct
date header

r
Adds correct
version header

184 CHAPTER 9 Uploading and downloading BLOBs
THE URI

Look at the URI that you’re calling at q. There’s some interesting information about
the request that’s being made.

 From the domain, you can determine that you’re using the live BLOB storage ser-
vice (blob.core.windows.net) and that the request is being made against the storage
account silverlightukstorage. Looking at the request, you can also derive that you want
a list of whatever is in the container ChrisConverted (chrisconverted?comp=list),
which we know are BLOBs (in fact, they’re the WMA files that were converted from
MP3).

 Windows Azure follows a standard naming convention for performing requests; as
soon as you’re familiar with some of the API calls it’s easy to infer what other calls
might look like. For example, if you required a list of whatever resides in a storage
account (containers), you could use the following URI:

http://silverlightukstorage.blob.core.windows.net/?comp=list

You would need to sign the request with your access key because it isn’t a public oper-
ation. Listing BLOBs in a public container can be performed without an authorization
key because an authorization key is required only for private containers.

THE REQUEST HEADERS

In the code for the standard CreateHttpRequest in listing 9.1, two headers are set: x-
ms-version and x-ms-date.

 The x-ms-version header r is an optional header that should be treated as a
required header. The storage service versioning policy is that when a new version of
an API is released, any existing APIs will continue to be supported. By providing the
correct x-ms-version header, you’re stating which API you want your request to work
against. Using this policy, Microsoft can release new functionality and change existing
APIs but allow your existing services to continue to work against the previous API.

TIP You should always check the version of the REST API that you’re using to
support a particular feature. At r we’re using the September 19, 2009 ver-
sion of the API. If a new feature is released and it isn’t working, there’s a good
chance that you forgot to update the version. The good news is that whenever
you download the latest version of the StorageClient library, it’ll already be
using the correct version.

 The x-ms-date header is a required header that states the time of the client
request. We set this value at e in listing 9.1. The value set in the request header is a
representation of the current time in UTC; for example, “Sat, 27 Jun 2009 23:37:31
GMT”. This request header serves two purposes:

� It allows the server to generate the same authorization hash as the client
� It prevents replay attacks by denying old requests

TIP If you suddenly start getting errors whenever you call the storage service,
it might be worth checking the time on your machine. If the time of the

185Using the REST API
request is out of synchronization with the server time in the data centers
(older than 15 minutes), the request will be rejected with a 403 response code.

We’ve looked at how to make non-authenticated requests against a public container
and how to make requests to the storage accounts via the SDK. We’ll now look at how
to make authenticated requests via the REST API and give you an understanding of
how the REST API calls are authenticated.

9.1.2 Authenticating private requests

In the previous section, you developed a console application to return a list of the files
that reside in your public container (ChrisConverted). Now you’re going to modify
this code to return all the containers in your development storage account. This sam-
ple is the direct REST API equivalent of the storage client calls that we performed in
the previous chapter.

 Because there’s only two containers in the development storage account (Chris-
Originals and ChrisConverted), we expect the following XML output from the con-
sole application:

<EnumerationResults AccountName="http://128.0.0.1:10000/devstoreaccount1/">
 <Containers>
 <Container>
 <Name>chrisconverted</Name>
 <Url>http://128.0.0.1:10000/devstoreaccount1/chrisconverted</Url>
 <LastModified>Sat, 27 Jun 2009 23:37:31 GMT</LastModified>
 <Etag>0x8CBC5975FB7A0D0</Etag>
 </Container>
 <Container>
 <Name>chrisoriginals</Name>
 <Url>http://128.0.0.1:10000/devstoreaccount1/chrisoriginals</Url>
 <LastModified>Sat, 27 Jun 2009 23:14:23 GMT</LastModified>
 <Etag>0x8CBC594247EFB60</Etag>
 </Container>
 </Containers>
 <NextMarker />
</EnumerationResults>

Listing 9.2 contains the code that we used to make this request via the REST API.
Before you can run this sample, you’ll need to reference the storage client because
you’re going to use some of its library calls to sign the HTTP request with the shared
access key. You’ll also need the following using statement at the top of your class:

 using Microsoft.WindowsAzure.StorageClient;

static void Main(string[] args)
{
 HttpWebRequest hwr = CreateHttpRequest(
 new Uri(@"http://127.0.0.1:10000/devstoreaccount1?comp=list"),
 "GET", new TimeSpan(0, 0, 30));

Listing 9.2 Listing the containers in the development storage account via REST

Creates HTTP
request as before

186 CHAPTER 9 Uploading and downloading BLOBs
...CloudStorageAccount.SetConfigurationSettingPublisher
➥ ((configName, configSetter) =>
 { configSetter(ConfigurationManager
 ➥ .AppSettings[configName]); });

var account =
 CloudStorageAccount.FromConfigurationSetting("DataConnectionString");

account.Credentials.SignRequest(hwr);

using (StreamReader sr =
 new

StreamReader(hwr.GetResponse().GetResponseStream()))
{
 XDocument myDocument = XDocument.Parse(sr.ReadToEnd());
 Console.Write(myDocument.ToString());
}

 Console.ReadKey();
}

The code in listing 9.2 is similar to the code in listing 9.1 except that we’re using a dif-
ferent URI (because we’re listing containers rather than BLOBs) and signing the
request. The URI for listing containers in the development storage account is http://
127.0.0.1:10000/devstoreaccount1/?comp=list. This URI will return a list of the con-
tents of the storage account (a list of containers).

 Apart from the URI, the only difference between the two listings is that you sign
the HTTP web request with your shared-key credentials. The process of signing the
request is quite complicated; it’s best to use the storage client code as we’ve done in
listing 9.2.

 Use the same code that you wrote earlier to extract the configuration setting:

var account =
 CloudStorageAccount.FromConfigurationSetting("DataConnectionString");

TIP CloudStorageAccount.FromConfigurationSetting will work with both
Windows Azure ConfigurationSettings and regular .NET application set-
tings.

Now sign the request using the request signing functionality built into the StorageCli-
ent library:

account.Credentials.SignRequest(hwr);

Using the SignRequest method also adds the x-ms-date header information to the
request, so you don’t have to add it on your own. Be aware that if you add the x-ms-
date header on your own and you sign the request with SignRequest, the header
might not be populated correctly.

 Even if you do plan to use only the REST API, it’s still worth referencing the Stor-
ageClient library just to use that bit of code.

Gets account
credentials using

StorageClient library

Signs request using
StorageClient library

Executes request
and gets response

187Using the REST API
SIGNING THE REQUEST

Although the request signing code is already implemented, let’s look at the overall
process of signing a request.

 If you were to look at the HTTP request that you generated in listing 9.2 (you could
stick a breakpoint after the request has been signed), you would see that the request con-
tains an Authorization header. The Authorization header for the request in listing 9.2 is

SharedKey devstoreaccount1:J5xkbSz7/7Xf8sCNY3RJIzyUEfnj1SJ3ccIBNpDzsq4=

The signature in the header (the long string after devstoreaccount1) is generated by
canonicalizing the request. The canonicalized request is hashed using a SHA-256 algo-
rithm and then encoded as the signature using Base64 encoding.

DEFINITION Canonicalizing is a defined process that converts a request into a
predictable request. You can find more information about the canonicaliza-
tion process at http://msdn.microsoft.com/en-us/library/dd179428.aspx.

PROCESSING THE REQUEST

After the request is received by the server, the server takes the incoming request and
performs the same canonicalization and hashing process with the shared key. If the
signature that’s generated matches the Authorization header, the server can perform
the request. Figure 9.2 shows the validation process between the client and the BLOB
storage service. Notice that the authorization key generated by the server matches the
original client request.

 If the signature generated by the server is different from the Authorization header,
then the server won’t process the request and returns a 400 response code (Bad
Request). Being able to generate the same authorization key both client-side and
server-side means that users who don’t have the shared key are prevented from per-
forming unauthorized requests against the account. Because the shared key is never
sent between the client and the BLOB storage service, the risk of the key being com-
promised is substantially reduced.

 The authorization key is generated from both the contents of the request and the
shared key. Generating the hash with both pieces of information means that the user
can’t tamper with the request to perform another operation. If, for example, a hacker

List storage account containers

Original client request

BLOB storage service
Generates authorization key from request

Authorization: SharedKey
devostoreaccount1:J5xkbSz7/7Xf8sCNY3RJlzyUEfnj1SJ3cclBNpDzsq4=

200 (OK)

Uri: http://127.0.0.1:10000/devstoreaccount1?comp=list
x-ms-date: Fri, 03 Jul 2009 19:22:17 GMT
x-ms-version: 2009-04-14
Authorization: SharedKey devstoreaccount1:J5xkbSz7/7Xf8sCNY3RJlzyUEfnj1SJ3cclBNpDzsq4=

Figure 9.2 Validation of
the authorization key when
the signature matches the
Authorization header

188 CHAPTER 9 Uploading and downloading BLOBs
were to intercept your previous request, then the generated Authorization header
server-side would change and the request would be denied. Figure 9.3 shows the vali-
dation process between the client and the BLOB storage service when the original
request from figure 9.2 has been tampered with.

 In figure 9.3, we’ve tampered with the original request from figure 9.2 to return
any containers from devstoreaccount2. Notice that the server generated a different
authorization key from the tampered request and therefore the server returns a 400
response code (Bad Request).

 Now that you understand how the REST API authentication process works, take a
break and have a quick beer. Just think, if you had to implement that code yourself
rather than Microsoft providing it, you’d probably prefer to have a longer break and
drown your sorrows.

9.2 Managing BLOBs using the StorageClient library
Now that you’ve finished your break and you’re rested enough to read this, let’s look
at how you can use the StorageClient library to list BLOBs in a container, rather than
using the REST API directly.

 In chapter 8, you developed a sample management application that would allow
you to upload podcasts in an MP3 format that were ready to be converted to WMA.
You made an ASP.NET page that displayed a grid of all the containers in your storage
account. Included in the grid was a hyperlink that would redirect you to another
page called blobs.aspx, passing in the name of the selected container in the query
string. We’re going to extend that example now to develop the page blobs.aspx,
shown in figure 9.4. This page is similar to the page that you developed for listing
containers in chapter 8.

 You can perform the following actions with the page shown in figure 9.4:

� List all BLOBs in the selected container
� Upload a new file

� Delete an existing BLOB

� Download an existing BLOB

List storage account containers

Tampered request

BLOB storage service
Generates authorization key from request

Authorization: SharedKey
devstoreaccount2:y0iAUPJEWY7T4tLDeSQOjsd6r61bat09P7VU1Am2apE=

400 (Bad request)

Uri: http://127.0.0.1:10000/devstoreaccount2?comp=list
x-ms-date: Fri, 03 Jul 2009 19:22:17 GMT
x-ms-version: 2009-04-14
Authorization: SharedKey devstoreaccount1:J5xkbSz7/7Xf8sCNY3RJlzyUEfnj1SJ3cclBNpDzsq4=

Figure 9.3 Validation result
when the signature doesn’t
match the Authorization
header. The server generates
a different authorization key
and the request is denied.

189Managing BLOBs using the StorageClient library
Let’s look at each of these actions in detail.

9.2.1 Listing BLOBs using the storage client

In this section, we’ll look at how to generate the grid that displays the list of BLOBs.
We’ll explain how to upload, delete, and view BLOBs later in the chapter. The follow-
ing listing contains the markup required for the blobs.aspx page shown in figure 9.3.

<div>
 <asp:GridView ID="gvBlobs" runat="server"
 onrowcommand="gvBlobs_RowCommand"
 onrowdeleting="gvBlobs_RowDeleting">
 <Columns>
 <asp:TemplateField>
 <ItemTemplate>
 <asp:LinkButton ID="btnDelete" runat="server"
 Text="Delete"
 CommandName="Delete"
 CommandArgument='<%#Eval("Uri")%>'/>
 </ItemTemplate>
 </asp:TemplateField>
 <asp:TemplateField>
 <ItemTemplate>
 <asp:LinkButton ID="btnView" runat="server"
 Text="View"
 CommandName="View"
 CommandArgument='<%#Eval("Uri")%>'/>
 </ItemTemplate>
 </asp:TemplateField>
 <asp:BoundField HeaderText="File" DataField="Uri"/>
 </Columns>
 </asp:GridView>
 <div>
 <div style="padding: 10px;">
 <div>
 Upload: <asp:FileUpload ID="fu" runat="server" />
 </div>
 <div>

Listing 9.3 ASPX page that lists the BLOBs in a container

Figure 9.4 An ASP.NET web page that displays all the BLOBs that are in the selected container in a
grid control

q
Grid of BLOBs

w
View BLOB
button

e
File upload
control

190 CHAPTER 9 Uploading and downloading BLOBs
 <asp:Button ID="btnUpload" runat="server"
 Text="Upload"
 OnClick="btnUpload_Click" />
 </div>
 </div>
 </div>
</div>

The ASPX code for displaying the BLOBs is similar to the ASPX we used in chapter 8 to
list containers, so this shouldn’t be too alien to you.

 At q a GridView is displayed that lists all the BLOBs in its data source. At w you’re
defining a hyperlink button that you’ll use to download the BLOB, and at e is the
standard ASP.NET FileUpload control to upload the file.

THE CODE-BEHIND FOR THE WEB PAGE

You’ve defined how your web page will look. Now you need to bind the grid to the
data source on page load. Listing 9.4 shows the code-behind required to display a list
of BLOBs for the selected container in your grid.

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 BindGrid();
}

private void BindGrid()
{
 CloudStorageAccount account =
 CloudStorageAccount.FromConfigurationSetting("DataConnectionString");

 CloudBlobClient blobClient =
 account.CreateCloudBlobClient();

 CloudBlobContainer container =
 blobClient.GetContainerReference(Request["container"] as string);

 gvBlobs.DataSource = container.ListBlobs();
 gvBlobs.DataBind();

The code shown in listing 9.4 is again similar to the list containers example in chapter
8. This code is the storage client equivalent to the code you used to display the list of
BLOBs with the REST API directly in listing 9.1.

 At q you retrieve an instance of the BLOB container by calling the GetContainer-
Reference method off the BLOB client. Notice that we’re passing in the container
name from the request query string. Finally, you retrieve a list of the files held in the
container by calling the ListBlobs method and binding the result to the GridView w.

 Now that you can list and display all of the BLOBs in the selected container, you
need to extend the web page so that you can upload new files into the container.

Listing 9.4 Show the list of BLOBs in the grid

r
Upload
button

Gets container
from request
query string

q

w
Lists BLOBs
in container

191Managing BLOBs using the StorageClient library
9.2.2 Uploading BLOBs

To upload files from your web page, you’re going to use the built-in ASP.NET upload
control at e in listing 9.3. On click of the upload button at r, you’re going to cap-
ture the uploaded file and then upload the captured file to BLOB storage. The follow-
ing listing contains the code-behind for the upload button click event.

protected void btnUpload_Click(object sender, EventArgs e)
{
 CloudStorageAccount account =
 CloudStorageAccount.FromConfigurationSetting("DataConnectionString");

 CloudBlobClient blobClient =
 account.CreateCloudBlobClient();

 CloudBlobContainer container =
 blobClient.GetContainerReference(Request["container"] as string);
 var blob =
 container.GetBlobReference(fu.PostedFile.FileName);

 blob.UploadByteArray(fu.FileBytes);

 BindGrid();
}

All the code in listing 9.5 has been discussed in previous examples, except for what’s
happening at q and w. At q you get a reference to the BLOB that you’re about to
create. We’re giving the BLOB the original name of the uploaded file (retrieved from
the UploadFile control). Then, at w you upload the new file to BLOB storage.

TIP You’ll notice that we’re extracting the filename and the file contents
directly from the ASP.NET file upload control. If you want, you can give the
file a name different from the original.

In the previous example, we used the UploadByteArray method to upload the BLOB.
Three other methods are provided in the StorageClient library that you can use:

Listing 9.5 Posting the uploaded file to BLOB storage

Setting the maximum request length

By default, ASP.NET is configured to allow a maximum upload of 4 MB. If you provide
a web role frontend to the BLOB storage as we’ve done in this sample, you might need
to increase the maximum request length.

To increase the default value to a larger value, you need to add the following line under
the system.web element in the web.config file:

<httpRuntime executionTimeout="300" maxRequestLength="51200"/>

The maximum upload size in the above example is 50 MB.

q
Gets reference
to new BLOB

w
Uploads file
contents to BLOB

192 CHAPTER 9 Uploading and downloading BLOBs
UploadFile, UploadText, and UploadFromStream. Depending on your situation, one
of these methods might be easier to use than UploadByteArray (for example, Upload-
File might be a better choice if you have a local file on disk that you want to store in
BLOB storage).

Now that you’ve spent all that time and effort adding the file to BLOB storage, let’s
delete it (groan).

9.2.3 Deleting BLOBs

Deleting a BLOB is similar to uploading a file except that you’re deleting the BLOB
instead of uploading it (cute, huh?). Just like the upload file example in listing 9.5,
you get the reference to the BLOB, and then delete the BLOB by calling the following:
blob.Delete();

 The following listing shows the code that will delete the BLOB in your web page.

protected void gvBlobs_RowCommand
 (object sender, GridViewCommandEventArgs e)
{
 if (e.CommandName == "Delete")
 {
 DeleteBlob(e.CommandArgument.ToString());
 }

 BindGrid();
}

private void DeleteBlob(string blobName)
{

 CloudStorageAccount account =
 CloudStorageAccount.FromConfigurationSetting("DataConnectionString");

 CloudBlobClient blobClient =
 account.CreateCloudBlobClient();

Splitting BLOBs into blocks

The maximum size of a BLOB is 1 TB, but if a file is larger than 64 MB, under the covers
the StorageClient library splits the file into smaller blocks of 4 MB each. One of the
advantages of the StorageClient library is that you don’t need to worry about this. If
you’re using the REST API, you’ll need to implement the splitting of BLOBs into blocks
and the committal of blocks and retry logic associated with re-uploading failed blocks
(yet another good reason to use the StorageClient library).

If you’re a sick and twisted individual who wants to mess around with blocks, then
feel free to look in more detail at the online documentation at http://msdn.microsoft.
com/en-us/library/ee691964.aspx.

Listing 9.6 Deleting the BLOB

http://msdn.microsoft.com/en-us/library/ee691964.aspx

193Downloading BLOBs
 CloudBlobContainer container =
 blobClient.GetContainerReference(Request["container"] as string);

 var blob =
 container.GetBlobReference(blobName);

 blob.Delete();
}

protected void gvBlobs_RowDeleting(object sender,
➥ GridViewDeleteEventArgs e)
{
}

As you can see, deleting a BLOB is pretty simple. Now you can list, upload, and delete
BLOBs from your storage account using your ASP.NET management website hosted in
your Windows Azure web role. Let’s complete the management page example by look-
ing at how you can download BLOBs.

9.3 Downloading BLOBs
In this section we’ll look at how to download BLOBs from both a public container and
a private container. To take things nice and easy, we’ll tell you how to download BLOBs
that are stored in a public container first.

9.3.1 Downloading BLOBs from a public container

If your BLOB is hosted in a public container, you can present the URI of the BLOB directly
to the user and they’ll be able to directly download the file to their browser. In our pod-
casting sample, the following URI will download podcast01.wma from the ChrisCon-
verted public container in the development storage account: http://127.0.0.1:10000/
devstoreaccount1/ChrisConverted/podcast01.wma. Because the BLOB is held in a pub-
lic container, the user won’t need to provide any credentials to access the BLOB.

TIP If you’ve correctly set the MIME type of your podcast, when the URI is
pasted into your browser, the podcast will automatically start playing in Win-
dows Media Player.

In our management web page example, we don’t want to expose the podcasts to the
world; we want to restrict access to our own credentials. Let’s look at how you can do
that using your new best friend, the storage client.

9.3.2 Downloading BLOBs from a private container using the storage client

Now we want you to modify your management web page so that if you click the View
button for the selected podcast, as shown in figure 9.5, you’re prompted to download
the file (also shown in figure 9.5).

 Although you can store the BLOB in a public container to achieve the same result,
in this example you’re going to first download the BLOB to your web role and then
serve the BLOB from your web role, rather than directly from BLOB storage.

Deletes
the BLOB

http://127.0.0.1:10000/devstoreaccount1/ChrisConverted/podcast01.wma

194 CHAPTER 9 Uploading and downloading BLOBs
In listing 9.3, we defined the ASPX for your View button; listing 9.7 is where we hook
up the code that will download the file when this button is clicked. The code in the
following listing will download the selected BLOB and prompt the user with the Save
dialog box shown in figure 9.5.

protected void gvBlobs_RowCommand(object sender,
➥ GridViewCommandEventArgs e)
{
 if (e.CommandName == "Delete")
 {
 DeleteBlob(e.CommandArgument.ToString());
 }

 if (e.CommandName == "View")
 {
 DownloadBlob(e.CommandArgument.ToString());
 }

 BindGrid();
}

private void DownloadBlob(string blobName)
{
 CloudStorageAccount account =
 CloudStorageAccount.FromConfigurationSetting("DataConnectionString");

 CloudBlobClient blobClient =
 account.CreateCloudBlobClient();

 CloudBlobContainer container =
 blobClient.GetContainerReference(Request["container"] as string);

 var blob =
 container.GetBlobReference(blobName);

 using (var ms = new MemoryStream());
 {
 blob.DownloadToStream(ms);
 Response.ContentType = blob.Properties.ContentType;
 Response.AddHeader("Content-Disposition",
 "attachment; filename=" blobName);

Listing 9.7 Downloading BLOBs from the grid using the storage client

Figure 9.5 Clicking the View button on your BLOBs page opens a Save dialog box

Creates memory stream
and downloads BLOB

q
w Sets

MIME type

195Integrating BLOBs with your ASP.NET websites
 Response.BinaryWrite(ms.ToArray());
 }
 }

At q you create a new memory stream that writes the contents of the BLOB that’s
been downloaded from BLOB storage. At w you set the MIME type of the file so that
you can allow the browser to perform the correct action based on that type (for exam-
ple, launch Windows Media Player, Microsoft Word, or some other action), and you
add the content-disposition header so that the browser knows to offer a Save file dia-
log box to the user. Finally, the downloaded BLOB is made available to the client by
writing the file to the response stream e.

TIP In the previous example, we used the DownloadToStream option to down-
load files from BLOB storage but the storage client also offers these methods to
download files: DownloadText, DownloadByteArray, and DownloadToFile.

So far we’ve shown you how to download files that are in public or private containers.
What if you want to do something a little more granular, like control access to your
BLOBs or containers? For operations like this, you can use a Shared Access Signature.
Later on, we’ll look at this feature in a little more detail.

 Now that you know how to upload and download BLOBs, let’s look at how you can
integrate BLOB storage with your existing ASP.NET websites.

9.4 Integrating BLOBs with your ASP.NET websites
In typical ASP.NET websites, you usually distribute your assets with your website.
Although this strategy works great for small websites, it’s pretty much unmanageable
when dealing with larger websites. Do you really want to redeploy your entire website
just because you have a new Hawaiian shirt in your product range and you need to
add an image of it?

 There’s a better way. In this section, we’ll tell you how you can integrate public
assets and private assets (such as purchased MP3 files) with your ASP.NET website. Let’s
return to the Hawaiian Shirt Shop example from chapter 2 to find out how you can
integrate your assets.

9.4.1 Integrating ASP.NET websites with table-driven BLOB content

Currently, the shirt shop website displays a list of all the products that you have for
sale, but it doesn’t display pictures of the shirts. Because the data is currently hard-
coded, you could just store the image on the website directly; any changes to the prod-
uct line would require you to deploy a new version of the website.

 In future chapters, you’re going to drive the data from an external data source
such as Table storage or SQL Azure, so you need a strategy that lets you update static
content on the website when the product line is changed, without redeploying the
images to the website.

 If you stored the pictures of the shirts in BLOB storage, you could store the URI of
the BLOB in your external data source. As you add new items to your data source, you

e
Writes file to
response stream

196 CHAPTER 9 Uploading and downloading BLOBs
can add the associated BLOB at the same time. To expand on the Hawaiian Shirt Shop
example, you could store an image of a shirt in BLOB storage as well as add a new shirt
to the table. In the table, you would store all the details of the shirt (the name of the
shirt, price, description, and so on) and its associated URI. Figure 9.6 shows a repre-
sentation of this setup.

 Because you’re happy for the images of your Hawaiian shirts to be in the public
domain, you can store the shirt images in a public container and set the URI of your
HTML image tag directly to the public URI. The following code shows how this image
tag might look:

<img src="http://silverlightukstorage.blob.core.windows.net
➥ /shirtimages/greenshirt.jpg" />

Using a public container is fine for storing content that you don’t mind making avail-
able to the world, but it’s not an acceptable solution if you want to serve content that
you want to keep protected.

NOTE Storing your website assets in BLOB storage is a great way to optimize
performance because it takes load away from your web server. In the next
chapter, we’ll look at how you can take your assets that are stored in BLOB
storage and expose them via the Windows Azure Content Delivery Network to
make even more performance improvements.

Returning to the podcast example, suppose you decided that you wanted only paid mem-
bers of your website to be able to download your MP3. In this scenario, you don’t want
to store the file in a public container; you want to store it in a private container instead.

9.4.2 Integrating protected, private content

Earlier in this chapter, in the BLOB management web page, you implemented a down-
load link that allowed you to serve files stored in a private container to your users on a
public website. Now we’re going to expand that technique to a more integrated, reus-
able solution by doing the following things:

1 Creating an HTTP handler that serves MP3 files from BLOB storage
2 Registering the HTTP handler
3 Protecting your handler so that only authorized users can use it

Data source

Name: Bright Red Shirt
Description: A bright red shirt
Price: $30
URI: http://silverlightukstorage.blob.core.windows.net/shirtimages/brightredshirt.jpg

Name: Bright Blue Shirt
Description: A bright blue shirt
Price: $40
URI: http://silverlightuk.blob.core.windows/net/shirtimages/brightblueshirt.jpg

Figure 9.6 Storing
URIs in an external
data source

197Integrating BLOBs with your ASP.NET websites
HTTP handlers let specified types of HTTP requests be handled by some custom code.
In this example, you’re going to build a handler that will intercept requests for MP3
files and return the MP3 files from BLOB storage instead of from the local filesystem.

CREATING THE HTTP HANDLER

You’re going to build a small sample that will intercept any incoming requests for MP3
files using an HTTP handler. Rather than attempting to serve the MP3 files from your
website’s filesystem, the handler will retrieve the files from your private BLOB storage
container and serve them to the user who requested them. For this task, we’re going
to build on the techniques that we used in listing 9.7. You can either serve the files
directly (useful for images) or initiate a Save dialog box (as shown in figure 9.5). In
this example, you’ll download a file directly. For example, when the user requests the
following URI, they’ll be served the file from BLOB storage:

www.mypodcastwebsite.com/podcast01.mp3

To implement an HTTP handler, add a new httphandler file to your ASP.NET web
project. This handler is called MP3Handler.cs. Listing 9.8 contains the implementa-
tion for MP3Handler.cs.

public class MP3Handler : IHttpHandler
{
 public void ProcessRequest(HttpContext context)
 {
 string blobName = context.Request.Path.Trim('/');
 var blobData = GetBlob("chrisoriginals", blobName);

 context.Response.ContentType = "audio/mpeg";
 context.Response.BinaryWrite(blobData);
 }

 public bool IsReusable
 {
 get {return false;}
 }

 private byte[] GetBlob(string containerName, string blobName)
 {
 CloudStorageAccount account =
 CloudStorageAccount
 ➥ .FromConfigurationSetting("DataConnectionString");

 CloudBlobClient blobClient =
 account.CreateCloudBlobClient();

 CloudBlobContainer container =
 blobClient.GetContainerReference(containerName);

 var blob =
 container.GetBlobReference(blobName);

Listing 9.8 An MP3 HTTP handler that serves MP3s from BLOB storage

q Content is the
incoming request

w
Parses BLOB name
and retrieves BLOB

e
Sets MIME type as MP3 and
writes file to the response

r Gets BLOB
from BLOB
storage

198 CHAPTER 9 Uploading and downloading BLOBs
 blob.DownLoadByteArray();
 }
}

The HTTP handler in listing 9.8 will be called whenever an MP3 file request is inter-
cepted at q. When the request has been intercepted, the name of the .mp3 file that
should be downloaded from BLOB storage from the requested path is extracted w.
The handler will then download the requested BLOB from the ChrisOriginals private
container at w by calling the GetBlob method r. After the file is retrieved from
BLOB storage, you set the MIME type as MP3 e (we’ve hardcoded the MIME type but in
a more generic sample you could retrieve it from the BLOB properties) and then write
the file back to the client.

REGISTERING THE HTTP HANDLER

To register the HTTP handler with your website, add the following line to your
web.config file in the handlers section under the system.webServer element:

<add name="MP3Handler" path="*.mp3" verb="GET" type=
➥ "AzurePlayAreaWeb_WebRole.MP3Handler, AzurePlayAreaWeb_WebRole"
➥ resourceType="Unspecified"/>

This code will configure your server to route any web requests that end in .mp3 to
your new handler. This is a great way to protect assets on your server that would nor-
mally be freely accessible. Your handler could check security permissions, route the
call to virtual storage, or deny the request.

AUTHORIZATION

If you want to restrict your MP3 files to logged-in users, you can use the built-in
ASP.NET authorization and authentication functionality:

<authorization>
 <deny users="?"/>
</authorization>

Now you have an integrated HTTP handler that can serve protected BLOB files from
BLOB storage to authorized users as if it were part of your website. If your website were
serving the same file to hundreds of users every day, then continually retrieving the
same file from BLOB storage would be inefficient. What you would need to do in that

Shared Access Signatures

Putting BLOBs in local storage to improve performance is useful for showing you how
to integrate local storage and BLOB storage together. It’s also useful as an option for
integrating content. You can use Shared Access Signatures to provide the same result.
Using Shared Access Signatures is the preferred approach to protect a BLOB because
it’s cheaper and takes load off your servers.

199Using local storage with BLOB storage
case is use BLOB storage and local storage together, to cache requests, so you wouldn’t
need to continually request the same BLOB from BLOB storage.

9.5 Using local storage with BLOB storage
In the previous section, you used a file handler to intercept MP3 requests from your
website and to serve them from BLOB storage rather than from your website. A more
efficient approach would be to check whether the file is already on your local filesys-
tem. If the file already exists, then you can just serve the file straight up. If the file
doesn’t exist, you can retrieve it from BLOB storage, store it on the local filesystem,
and then serve the file. All future requests for the file won’t need to continually
retrieve the file from BLOB storage.

9.5.1 Using a local cache

When you define Windows Azure web roles, you can allocate a portion of the local file-
system for use as a temporary cache. This local storage area allows you to store semi-
persistent data that you might use frequently, without having to continually re-request
or recalculate the data for every call.

 You must be aware that this
local storage area isn’t shared
across multiple instances and
the current instance of your
web role is the only one that
can access that data. Figure 9.7
shows the distribution of
BLOBs in local storage across
multiple instances.

 Because the load balancer evenly distributes requests across instances, a user won’t
always be served by the same web role instance. Any data that you need persisted
across multiple requests (such as shopping cart or session data) shouldn’t be stored in
local storage and must be stored in a data store that all instances can access.

9.5.2 Defining and accessing local storage

As we discussed in chapter 4, you can define how much space you require on your
local filesystem in your service definition file. The FC uses this information to assign
your web role to a host with enough disk space. The following code is how you would
define that you need 100 MB of space to cache MP3 files:

<WebRole name="ServiceRuntimeWebsite">
 <LocalResources>
 <LocalStorage name="mp3Cache"
 cleanOnRoleRecycle="true"
 sizeInMB="100" />

MyVideo1.mp3 MyVideo2.mp3 MyVideo3.mp3 MyVideo4.mp3
BLOB storage

MyVideo1.mp3
MyVideo2.mp3

Web role #1

MyVideo2.mp3
MyVideo4.mp3

Web role #2

MyVideo3.mp3
MyVideo4.mp3

Web role #3

Figure 9.7 Three web role instances, each with different
local copies of BLOBs in its local storage

200 CHAPTER 9 Uploading and downloading BLOBs
 </LocalResources>
</WebRole>

To access any of the files held in local storage, you can use the following code to
retrieve the location of the file:

 LocalResource localCache =
 RoleEnvironment.GetLocalResource("mp3Cache");

 string localCacheRootDirectory = localCache.RootPath;

After you’ve retrieved the root directory of local storage (RootPath), you can use stan-
dard .NET filesystem calls to modify, create, read, or delete files held in local storage.
(For more information about local storage, see chapter 4).

 Great! You’ve configured your local storage area. Now you need to modify your
HTTP handler to use your local storage area, where possible.

9.5.3 Updating your HTTP handler to use local storage

You’re going to modify your HTTP handler to check in local storage to determine
whether the requested file exists already. If the file doesn’t exist, then you’ll retrieve
the MP3 file from BLOB storage and store it in local storage. Finally, you’ll write the file
back to the client from your local filesystem. The following code shows how you mod-
ify the ProcessRequest method in listing 9.8 to use local storage.

public void ProcessRequest(HttpContext context)
{
 string blobName = context.Request.Path.Trim('/');

 var mp3Cache = RoleEnvironment.GetLocalResource("mp3Cache");
 string localFilePath = mp3Cache.RootPath + blobName;

 if (!File.Exists(localFilePath))
 {
 var blobData = GetBlob("chrisoriginals", blobName);
 File.WriteAllBytes(localFilePath, blobData);
 }

 context.Response.ContentType = "audio/mpeg";
 context.Response.WriteFile(localFilePath);
}

Using the local storage mechanism in your HTTP handler improves performance by
serving the requested file from local storage, rather than always having to retrieve the
file from BLOB storage first. Although performance is improved, if the file is changed
in BLOB storage, the file that you’ll serve will be out of date. Let’s look at how you can
keep the performance improvement but serve the latest content even if the file has
changed in BLOB storage.

TIP Although this sample is focused on web HTTP handlers, this technique
can easily be used in worker roles. I currently use this technique with a Win-
dows Azure MapReduce solution that I’ve built.

201Using local storage with BLOB storage
9.5.4 Checking properties of a BLOB without downloading it

If you were to use the HTTP HEAD verb instead of the GET verb, you could check the
properties of the file without downloading the file. Figure 9.8 shows the output of a
HEAD request.

 In figure 9.8, the Last-Modified tag shows us the last time the file was updated in
BLOB storage. By comparing the header value to the local value in your file proper-
ties, you know whether the file has changed.

The listing that follows shows the code for the console application shown in figure 9.8.

static void Main(string[] args)
{
 HttpWebRequest hwr = CreateHttpRequest(
 new Uri(@"http://127.0.0.1:10000/devstoreaccount1/chrisoriginals/
 ➥ podcast01.mp3"),
 "HEAD", new TimeSpan(0, 0, 30));

 var account =
 CloudStorageAccount.FromConfigurationSetting("DataConnectionString");

 account.Credentials.SignRequest(hwr);

 var response = hwr.GetResponse();

 foreach (string header in response.Headers)
 {
 Console.WriteLine("{0} : {1}", header, response.Headers[header]);
 }

 Console.ReadKey();
}

x-ms-request-id

In figure 9.8, you’ll notice that there’s a tag called x-ms-request-id. Every request
made is assigned a unique identifier (GUID) that’s returned in the response. Every re-
quest and response is logged by Microsoft; if you’re experiencing issues, you can al-
ways pass this ID with a support request—providing the ID lets Microsoft easily
investigate any issues you have.

Listing 9.9 Showing the output of a HEAD request

Figure 9.8 The output of a HEAD request

q
HEAD request
rather than GET

w Iterates through
returned headers

202 CHAPTER 9 Uploading and downloading BLOBs
In the code example shown in listing 9.9, you make the same request that you’ve
made before, but it’s a HEAD request instead of a GET request. You’re making a HEAD
request for the file podcast01.mp3 in the ChrisOriginals container in your develop-
ment storage account q. At w you loop through all the returned headers, outputting
the header key and value to the console screen.

USING THE STORAGECLIENT LIBRARY

In listing 9.9, you retrieved the last modified time using the REST API directly,
although you could’ve used the StorageClient library. The following code performs a
HEAD request that returns the last modified time:

blob.FetchAttributes();
var lastModifiedTime = blob.Properties.LastModifiedUtc;

FetchAttributes is the StorageClient library equivalent of HEAD. It returns all the
properties and custom metadata of the BLOB, without downloading the actual file.
Table 9.1 lists the BLOB properties and their descriptions.

Now that you’re familiar with BLOB properties and how to retrieve them without
downloading the file, let’s look at how you can use this knowledge to improve the per-
formance of your handler.

9.5.5 Improving your handler to check the last modified time

Because you can retrieve the last modified time, you can modify your handler to
check whether the file has changed since you last downloaded it. If it has changed,

Table 9.1 BLOB properties

Property name Description

BlobType PageBlob, BlockBlob

CacheControl Allows you to instruct the browser on how to cache the BLOB

ContentEncoding Encoding of the header

ContentLanguage Language header of the BLOB

ContentMD5 MD5 hash of the content header

ContentType The MIME type of the BLOB

Etag Unique identifier of the request (changes every time a BLOB is
modified)

LastModifiedTimeUtc Last time the BLOB was modified

LeaseStatus Used with page blocks: Locked, Unlocked; not available in
the StorageClient library.

Length Size of the BLOB, in bytes

203Using local storage with BLOB storage
you can download another copy of the file. The following listing shows the modified
code for your handler.

blob.FetchAttributes();
 var lastModifiedTime = blob.Properties.LastModifiedUtc;

 if (!File.Exists(localFilePath) ||
 File.GetLastAccessTimeUtc(localFilePath) < lastModifiedTime)
{
 var blobData = GetBlob("chrisoriginals", blobName);
 File.WriteAllBytes(localFilePath, blobData);
 File.SetLastWriteTimeUtc(localFilePath, lastModifiedTime);
}

At q you get the last modified time of the BLOB. This method is the same code that
you used in section 9.5.4; you can either use the StorageClient library or the REST API
directly to retrieve this data.

 After you’ve gotten the last modified time of the BLOB, then you check w whether
you already have the file locally and whether the local file is older than the server file.
The final change that you need to make is that you set the last write time of the local
file to the last modified time of the BLOB e.

 So far, we’ve only looked at the properties of a BLOB. Now let’s look at the other
part of the BLOB data that’s returned in a HEAD request: custom metadata.

9.5.6 Adding and returning custom metadata

In listing 9.9, we showed you how to view all the headers associated with a BLOB
using a console application. In that example, you returned all the standard headers
associated with a BLOB (last-modified, x-ms-request-id, and so on). If you want
to associate some custom metadata with a file, that metadata would also be dis-
played in the response headers.

DISPLAYING CUSTOM METADATA

Let’s modify the BLOB podcast01.mp3 to include the author of the file (me) as cus-
tom metadata. Figure 9.9 shows the HEAD response in the same console application
using the same code that we developed in listing 9.10.

Listing 9.10 Checking the last modified date

Gets BLOB
properties and
metadata

q

w

e
Sets last
write time

Figure 9.9 HEAD response with custom metadata

Checks whether
BLOB has changed

204 CHAPTER 9 Uploading and downloading BLOBs
Note that with the file podcast01.mp3, there’s a new header returned in the response,
called x-ms-meta-author, with the value chris hay. In this example, we returned the
metadata from the HEAD request, but it’s also available in a GET request.

SETTING CUSTOM METADATA

If you need to set some custom metadata, you can easily do this with the StorageClient
library. The following code sets the metadata for the file podcast01.mp3:

 blob.Metadata.Add("Author", "Chris Hay");
 blob.SetMetadata();

This code calls the UpdateBlobMetadata method on the container, passing in a Name-
ValueCollection of metadata that you want to store against the BLOB.

SCENARIOS FOR USING CUSTOM METADATA

The metadata support for BLOBs allows you to have self-describing BLOBs. If you need
to associate extra information with a BLOB (for example, podcast author, recording
location, and so on), then this would be a suitable place to store that data; you wouldn’t
have to resort to an external data source. Any custom attributes associated with a file
(such as the author of a Word document) could also be stored in the metadata.

TIP If you need to be able to search for metadata across multiple BLOBs, con-
sider using an external data source (for example, a database or the Table stor-
age service), rather than searching across the BLOBs.

Now that you know how the upload and download operations operate under the cov-
ers, let’s return to the final part of the uploading and downloading puzzle, namely,
copying BLOBs.

9.6 Copying BLOBs
So far in this chapter, you’ve uploaded files and downloaded files in and out of your
account. But you don’t always want to transfer files outside your account; sometimes
you might want to take a copy of an existing file in the account.

 Let’s return to the podcasting example for a lesson on why you might want to do this.
Let’s say that during the conversion of a WMA file to MP3, you decide that you don’t want

x-ms-meta

The StorageClient library automatically prefixes all metadata with the tag x-ms-meta-.
We actually set the key as author in the metadata collection, but the response header
returned x-ms-meta-author. As a matter of fact, the BLOB storage service will only
allow you to set metadata with the prefix x-ms-meta- and it ignores any attempt to
modify any other header associated with a BLOB. Unfortunately, this means you can’t
modify any standard HTTP header that isn’t set by the BLOB storage service.

205Copying BLOBs
to make the converted file immediately available. In this case, your converted MP3 file
would reside in a private container that isn’t available to the general public. At a later
date, you decide to make the file available to the public by moving it into your public
downloads container. To do this, you copy your
converted file from one container to another.
Figure 9.10 shows a file being copied from one
container to another.

 In figure 9.10, the BLOB isn’t being uploaded
or downloaded; the BLOB podcast01.mp3 is just
being copied from the MP3Conversions con-
tainer and the copy is being placed in the Public-
Downloads container.

 Although you could do this using a download followed by an upload, this would
be much slower than just doing an internal copy within the data center. Likewise,
performing an upload followed by a download would be incredibly slow and waste-
ful of network resources if the calling client was based outside the Windows Azure
data center.

 Listing 9.11 shows the code used to copy a very large filename podcast03.mp3 to
the PublicDownloads container from the MP3Conversions container via the REST API.

 HttpWebRequest hwr = CreateHttpRequest(
 new Uri(@"http://127.0.0.1:10000/devstoreaccount1/publicdownloads/
 ➥ podcast03.mp3"),
 "PUT", new TimeSpan(0, 0, 30));

 hwr.Headers.Add("x-ms-copy-source",
 "/silverlightukstorage/mp3conversions/podcast03.mp3");

 var account =
 CloudStorageAccount.FromConfigurationSetting("DataConnectionString");

 account.Credentials.SignRequest(hwr);

 hwr.GetResponse();

As you can see in listing 9.11, the basics of making the HTTP request is pretty much
the same as any other REST request you’ve made. In this case, you’re setting the desti-
nation container q as the URI for the request, and you’re setting the request to be a
PUT (rather than a GET, HEAD, or POST).

 At w you set the location of the source BLOB to be copied. The header x-ms-copy-
source is where you define the location of the file; notice that we’re including the stor-
age account name (silverlightukstorage), the container (mp3conversions), and
the BLOB name (podcast03.mp3) in the header value.

Listing 9.11 Copying a BLOB between containers

MP3Conversions PublicDownloads

Podcast01.mp3
Podcast02.mp3
Podcast03.mp3

Podcast01.mp3
Podcast02.mp3

Figure 9.10 Copying podcast03.mp3 in
the MP3Conversions container to the
PublicDownloads container

q
PUT request to
destination container

w
Source
location of file

206 CHAPTER 9 Uploading and downloading BLOBs
9.6.1 Copying files via the StorageClient library

Listing 9.11 uses the REST API directly to copy the BLOB, but you could make this call
by making the simpler StorageClient library call:

 var sourceBlob = sourceContainer.GetBlobReference("podcast01.mp3");
 var targetBlob = targeCcontainer.GetBlobReference("podcast01.mp3");
 targetBlob.CopyFromBlob(sourceBlob);

This code makes the same call as in listing 9.11, this time using the StorageClient
library instead of using the REST API directly.

NOTE Although you can use the REST API, using the StorageClient library is
much easier. Save yourself a lot of heartache and use the REST API only when
necessary. Try to stick to using the lovely StorageClient library.

9.7 Setting shared access permissions
Access to a BLOB is controlled by the container that it lives in. If the BLOB lives in a
public container, it’s available to the world. If the BLOB lives in a private container,
you can access it only with your private authentication key.

WARNING Don’t distribute your private authentication key. Doing so is a sure-
fire way to have some evildoer trash your data.

Snapshotting BLOBs

The problem of copying BLOBs is that you have to pay storage costs to the Microsoft
bean counters for keeping duplicate copies of the data. If you’re only copying the BLOB
to maintain some sort of version control, you should consider snapshotting instead.
A snapshot pins a version of your BLOB at the date and time you created the snapshot.
The snapshot is read only (it can’t be modified) and can be used to revert to earlier
versions of a BLOB. Only changes made between versions of snapshots are charge-
able.

To create a snapshot, you can make the following call:

var snapshotBlob = blob.CreateSnapshot();

To retrieve a snapshot via the REST API, you can use the following URI:

http://accountname.blob.core.windows.net/containername/blobname?snapshot=
<DateTime>

You can also retrieve a snapshot using the StorageClient library:

var snapshotBlob = container.GetBlobReference(“blobname?snapshot=<Da-
teTime>”);

For more details about snapshotting, go to http://msdn.microsoft.com/en-us/library/
ee691971.aspx.

http://accountname.blob.core.windows.net/containername/blobname?snapshot=<DateTime>

207Setting shared access permissions
These levels of access are a little too extreme; we need a more granular way of control-
ling access to our BLOBs, namely Shared Access Signatures. Using shared access, you
can set a policy on a private container (or BLOB), and anyone who makes a request
with the correct signature can perform the appropriate action on the BLOB (say,
download the BLOB).

 Although you can assign permissions at an individual BLOB level, this is a pain to
maintain. It’s easier to maintain permissions at a container level (you can always have
a container that consists of a single BLOB).

 Let’s now return to the podcast example and look at how you can control down-
load access to one of your podcasts.

9.7.1 Setting shared access permissions on a container

Let’s say your podcasting business has gone well and you’ve decided to start selling
some of your podcasts to the general public. In this scenario, after some rich dude has
purchased the podcast, you need to provide a way for them to download the podcast
without making it public (you obviously don’t want to give them your owner authenti-
cation key). To achieve this, you’re going to store your podcast (podcast03.mp3) in its
own private container (Podcast03), which isn’t available to the general public.

 After your customer has purchased the podcast, you’ll generate a Shared Access
Signature that will give that customer permission to read any BLOBs (in this case,
podcast03.mp3) in the Podcast03 container, for a period of 24 hours. After the 24-hour
period has expired, the customer will no longer be able to download the podcast.

 The first thing you need to do is generate a shared access policy that will restrict
the download period to the next 24 hours, using the following code:

var oneDayDownloadpolicy = new SharedAccessPolicy();
oneDayDownloadpolicy.SharedAccessStartTime = DateTime.Now;
oneDayDownloadpolicy.SharedAccessExpiryTime = DateTime.Now.AddDays(1);
oneDayDownloadpolicy.Permissions = SharedAccessPermissions.Read;

As shown in the code, you can specify both a start time and an expiry time for the pol-
icy. If you don’t specify a start time, the value now is substituted as a default. After
you’ve specified this policy, apply it to the container.

var permissions = new BlobContainerPermissions();
permissions.SharedAccessPolicies.Clear();
permissions.SharedAccessPolicies.Add("CustomerA", oneDayDownloadPolicy);
container.SetPermissions(permissions);

Finally, you can generate a URI that customers will be able to use to download the
BLOB, using the following code:

string sharedAccessSignature = container.
➥ GetSharedAccessSignature(oneDayDownloadpolicy);
string uri = blob.Uri.AbsoluteUri + sharedAccessSignature;

208 CHAPTER 9 Uploading and downloading BLOBs
The generated URI will look something like this:

https://chrishayuk.blob.core.windows.net/podcast03/podcast03.mp3?st=
➥ 2010-01-04T12%3A08%3A00Z&se=2010-01-05T12%3A08%3A00Z&sr=

➥ b&sp=r&sig=ByfV3a1SXOXT04G4GF%2FNQo%2B9cxx4vrRE45kYxbhFhJk%3D

And that’s about it; you can now dynamically assign permission to read BLOBs that are
in containers.

9.8 Summary
And….breathe. It’s fairly safe to say we’ve covered how to manage BLOBs stored in
BLOB storage in great depth.

 In this chapter, we built upon the knowledge you gained in chapter 8 and looked
at how you can upload and download files using the StorageClient library. You know
how much the StorageClient library can do for you. We figure that the real take-away
from that section is that you shouldn’t use the REST API and you should stick to the
StorageClient library; otherwise, you have to worry about blocks and retries.

 Not only did we look at how to use BLOB storage, but you also learned how you can
integrate with your ASP.NET website solutions. BLOB storage is the ideal place to store
your ASP.NET website assets. It’s perfectly suited to providing controlled access to con-
tent you want to protect, such as paid MP3 files.

 We used two different methods of serving up content: the HTTP handler and the
container-level access policy. Although you should probably use the container-level
access policy whenever possible (it’s cheaper), the techniques that you learned when
you built the HTTP handler are invaluable for synchronizing access between local stor-
age and BLOB storage.

 In chapter 8, we focused on managing accounts and containers. In this chapter, we
showed you how to work with the actual BLOBs. Not only did we look at how to
develop against the BLOB service, but we also showed you how you can use the service
with your ASP.NET websites.

 In the next chapter, we’ll build on your BLOB knowledge and look at how you can
use the BLOB storage service without a web role, worker role, or server, and run it as a
standalone service. We think you’ll agree that it opens up some interesting scenarios.

Assigning other types of permissions

What if you want to be able to assign permissions at a BLOB level (rather than at a
container level) or if you want to provide more than just read permissions? You can
generate Shared Access Signatures that give users permissions to write to certain
BLOBs in your container. This scenario is a little too detailed for what we would like
to show in this book, but feel free to visit the online documentation for more details
at http://msdn.microsoft.com/en-us/library/ee395415.aspx.

When the BLOB
stands alone
Although BLOB storage is generally used as a durable storage area for web and
worker roles, it can also be used as a standalone service; you can use the service for
your applications without hosting a worker or web role.

 So far in this book we’ve focused on using web roles to host websites. Now we’re
going to tell you how you can use BLOB storage to host a static HTML website with-
out needing a web role.

10.1 Hosting static HTML websites
You learned in chapter 9 that BLOBs held in a public container are accessible to the
outside via a public URI over an HTTP connection. Those files can be accessed with

This chapter covers
� Hosting static websites in BLOB storage

� Hosting Silverlight applications in BLOB storage

� Hosting website assets in BLOB storage

� Using BLOB storage to progressively download
video
209

210 CHAPTER 10 When the BLOB stands alone
standard web browsers such as Internet
Explorer. BLOB storage also lets you configure
the MIME types associated with contained files;
the web browser can correctly handle the
served content. These capabilities make BLOB
storage not just a networked hard disk but
rather a full-fledged web server farm (as
shown in figure 10.1).

BLOB storage can serve up all modern con-
tent types (including standard HTML pages,
JavaScript files, CSS files, images, movies, Word documents, PDF documents, Silver-
light applications, and Flash applications), making BLOB storage a viable consider-
ation for hosting static websites.

In this section, we’ll show you how BLOB-storage hosting works by showing you how to
create and then publish a simple static HTML website. We’ll also look at a couple of
issues related to using BLOB storage as a host. Now let’s get to it and create a static
website that you can host in BLOB storage.

10.1.1 Creating a static HTML website

The website that you’re about to build is a simple HTML page with a JavaScript calcula-
tor, as shown in figure 10.2. When we say calculator, it really just adds two numbers
together; abacus++ is probably a more accurate term.

 After the user enters two values and clicks the equals button, the result appears
(with a gratuitous smiley face graphic), as shown in figure 10.3.

Why would I want to use BLOB storage rather than a web role?

Although web roles are the recommended solution for most scenarios, in some in-
stances it might be more cost effective to use BLOB storage to host your website. If
your website is a standard static HTML website that doesn’t perform any server-side
processing, then it’s a suitable candidate for hosting in BLOB storage.

For example, informational sites such as local business websites, static corporate
websites, and Silverlight (or Flash) games are good candidates for BLOB-storage host-
ing. You might conclude that a static website is a fairly uncommon scenario, but it’s
far more common than you might think. For example, www.sagentia.com is a typical
corporate website. Apart from a search facility (which could be implemented using
Google and JavaScript), there are no interactive parts to this website. There’s no rea-
son why this website couldn’t be hosted in BLOB storage rather than using ASP.NET
or JSP.

Quite simply, if you want a cheap method of hosting websites in a scalable fashion
and you don’t need to dynamically generate pages, you can save yourself the cost of
web roles and just pay per request.

BLOB storage load balancer

BLOB
server

1

BLOB
server

2

BLOB
server
10,000

BLOB
server

n

Web browser

Figure 10.1 BLOB storage acting as a web
farm (look, no web roles)

211Hosting static HTML websites
Although this web page is a simple example, it does consist of all the major parts of a
typical website: HTML, CSS, JavaScript, and assets (such as images). Table 10.1 gives a
quick overview of the contents of this site.

That’s what makes up this website. Now let’s take a look at some of the code. The list-
ing that follows contains the HTML for this page.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
➥ Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/
➥ xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
<head>
 <title>Chapter 10 - Static Html Website hosted in Blob Storage</title>
 <link rel="stylesheet" type="text/css" href="standard.css" />
 <script type="text/javascript" src="calculator.js"></script>
 <script type="text/javascript">
 function calculate() {
 document.getElementById('result').value =
 add(

Table 10.1 A breakdown of all the files in the website shown in figure 10.3

Website file Purpose

default.htm HTML page with buttons, text boxes, and stuff.

standard.css All good web designers use CSS for their markup.

calculator.js The complicated JavaScript that adds two numbers together.

happy.jpg The smiley face that appears in figure 10.3.

Listing 10.1 Calculator page website HTML

Figure 10.2 A simple static HTML
website hosted in BLOB storage

Figure 10.3 On
click of the equals
button, the result
is displayed (along
with a badly drawn
smiley face)

Reference
to CSS file

Reference to
JavaScript file

q
Calculates
the value

212 CHAPTER 10 When the BLOB stands alone
 document.getElementById('number1').value,
 document.getElementById('number2').value
);

 document.getElementById('piccy').className = "visible";
 }
 </script>
</head>
<body>
 <div class="standarddiv">
 A very simple calculator
 </div>
 <div class="standarddiv">

 <input id="number1" type="text"
 value="5" class="standardtextbox"/>

 +
 <input id="number2" type="text"
 value="10" class="standardtextbox"/>

 <input type="submit" value="="
 class="standardbutton"
 onclick="calculate();"/>

 <input id="result" type="text"
 class="standardtextbox"
 readonly="readonly"/>

 <div id="piccy" class="hidden">

 </div>
 </div></body>
</html>

We’re not going to explain this code in much detail. It’s fairly simple HTML and this is
chapter 10; if you’ve gotten this far, you’ve probably figured out HTML already. We’ll
cover the important bits, though. On click of the equals button at w in listing 10.1,
the JavaScript function at q is invoked. This function takes the contents of the two
text boxes (number1 and number2), calls the add function, and displays the result in
the result text box. Finally, when the calculation is complete, the style at e is changed
from hidden to visible and the smiley face graphic as seen in figure 10.3 is displayed.

 Now that we’ve pushed technology to its absolute limit by building a web page that
can add numbers together (woo-hoo, go us), you’re going to publish your work of art
to BLOB storage for hosting.

10.1.2 Publishing your website to BLOB services

In previous examples, you’ve programmatically added your BLOBs to the storage ser-
vice. In this example, you’ll make use of a tool called Chris Hay’s Azure Blob Browser
(can you guess from the title who created it?) to upload the files to BLOB storage. Fig-
ure 10.4 shows the addition of the calculator.js file to BLOB storage via the tool.

w
Calculate
button

e
Happy
picture

213Hosting static HTML websites
Using the BLOB browser, you can add each file of the website (default.htm, calcula-
tor.js, standard.css, and happy.jpg) by selecting the file to upload, setting the MIME
type (which is automatically predicted for you, but is also editable), and clicking the
Add button.

 After all the files are uploaded into the appropriate public container, you can
access the website with a standard web browser using the following URI structure:
http://silverlightukstorage.blob.core.windows.net/azureinaction/default.htm.

 Note that you must include the filename (default.htm) because BLOB storage
doesn’t support default documents.

TIP If you’re hosting your website or web application in BLOB storage, you
probably don’t want your clients to use the BLOB.core.windows.net domain.
You need to host your website on your own custom domain, for example,
http://www.noddyjavascriptcalculator.com/. For details about how to do this,
see chapter 8.

SETTING THE CORRECT MIME TYPE

If the correct MIME type isn’t set, the web
browser won’t be able to render the down-
loaded file. Some browsers, such as Internet
Explorer, will render the content in some situ-
ations even if the MIME type is incorrect;
other browsers, such as Firefox, require the
MIME type to be set explicitly.

 Figure 10.5 shows how Firefox handles
HTML documents that don’t have the correct
MIME type (text or HTML) but instead use the
default Azure BLOB storage services MIME
type (application/octet-stream). Figure 10.5

Figure 10.4 Adding calculator.js to BLOB storage via Chris Hay’s Azure Blob Browser

Figure 10.5 Accessing a file that has an
incorrect MIME type in Firefox

214 CHAPTER 10 When the BLOB stands alone
shows that Firefox can’t display the page and requires further instructions from the
user. If the MIME type is set correctly, Firefox will show the web page that’s shown in fig-
ure 10.3.

 Now that your first static HTML website is running in BLOB storage, let’s look at how
you can move beyond flat directory structures and store and retrieve files within hier-
archies.

HANDLING DIRECTORY STRUCTURE

In our calculator example, we used the following flat directory structure for the files:

� default.htm
� calculator.js
� standard.css
� happy.jpg

Although this kind of structure is useful for small websites, it’s limiting for websites
with a large hierarchy. BLOB storage technically doesn’t support directories within a
container, but you can simulate such support by using a slash (/) as a separator in the
BLOB name, which creates a hierarchy for the files. The following list shows how you
can represent your files in BLOB storage:

� Chapter10/default.htm
� Chapter10/javascript/calculator.js
� Chapter10/css/standard.css
� Chapter10/images/happy.jpg

Using the slash separator in the BLOB name means that the default.htm page would
be accessed using the following URI structure: http://silverlightukstorage.blob.core.
windows.net/azureinaction/Chapter10/default.htm.

 The CloudBlobDirectory class in the StorageClient library provides a way around
the limitation of containers not having subcontainers (or subfolders) by providing a
set of methods that allows you to pretend that there’s a real directory structure in a
container. It’s driven by the slashes you put in your BLOB filename.

 Now that you’ve made this example website, you can tell that using BLOB storage
as a web server is pretty cool and simple. There is, however, one drawback.

LOGGING BLOB REQUESTS

As of version 1, BLOB requests aren’t logged. This level of logging is vital for analyzing
who’s visiting your website, where they’ve come from, and what parts of your site are
popular. If you’re used to running your own website, you usually have access to your
IIS logs, which contain information such as page requested, IP address, referrer, and
so on. Because the BLOB storage service doesn’t provide such information, if you’re
going to use it to host HTML websites, you need to use an external analytics service,
such as Google Analytics.

http://silverlightukstorage.blob.core.windows.net/azureinaction/Chapter10/default.htm

215Hosting Silverlight applications in BLOB storage
 In this section, we showed you how to display static HTML websites in BLOB storage
services. Next, we’ll look at hosting Rich Internet Applications (RIAs), specifically Sil-
verlight applications.

10.2 Hosting Silverlight applications in BLOB storage
Although you’ll usually host your Silverlight applications in a standard Windows Azure
web role, you can host your Silverlight applications in BLOB storage, if required.
Depending on your web application, you can effectively use BLOB storage to achieve
massive scale for minimal cost. For example, in our podcasting example from the pre-
vious chapters, it might make financial sense to have your website hosted in a web
role, but to also have a Silverlight media player hosted in BLOB storage. If you run a
foreign currency exchange website, you might want to host the main site (which could
offer the option to purchase currency) in a web role, but host an exchange rate calcu-
lator in BLOB storage.

NOTE In this chapter, we’re focusing on Silverlight because it’s familiar to
.NET developers. Although we’re looking exclusively at Silverlight, the tech-
niques discussed in this section are applicable to other RIA solutions (for
example, Flash, Flex, Air, and so on).

In this section, we’ll look at how you can enable such scenarios by showing you how
you can do the following using BLOB storage:

� Host a standalone Silverlight application that’s contained in a static HTML page
� Host a standalone Silverlight application that’s contained in an ASP.NET web page
� Get your Silverlight application that’s hosted in BLOB storage to communicate

with external web services
� Store external Silverlight application access files

And now for the details that will enable you to do all this wonderful stuff with BLOB
storage.

10.2.1 Hosting the Silverlight Spectrum emulator

If you’ve developed a standalone Silverlight application that requires no interaction
with any backend services, BLOB storage is a cost-effective candidate for hosting your
Silverlight application. These types of applications typically include games, tax calcula-
tors, and other widgets.

 For our next example, we’ll show you how to host a small Silverlight application in
BLOB storage. The application that you’ll host is a Silverlight ZX Spectrum emulator,
which was an 8-bit home computer of the 1980s, very like a Commodore 64 (actually,
that’s not true; it was much worse, but it had spirit). Figure 10.6 shows the emulator
running from BLOB storage.

216 CHAPTER 10 When the BLOB stands alone
 The ZX Spectrum emulator not
only allows you to play games from
the 1980s, but as you can see from
figure 10.6, you can even write BASIC
programs in it. Now, we don’t want
you to lose focus on this book as soon
as you load this thing. As cool as Jet
Set Willy is, it won’t help you deliver
your amazing cloud-based applica-
tion. You’ll have to continue to pay
attention to learn how to do that.

 To store the application in BLOB
storage, upload ZXSilverlight.xap
using the same procedure you used
in the previous section. (You can
download this Silverlight application
and its source code from http://
www.azureinaction.com.) You must
set the BLOB with the correct MIME
type; otherwise, the browser won’t be able to launch the application. The MIME type
for a Silverlight application is application/x-silverlight-app.

 You’re also going to store the HTML page that hosts the Silverlight application in
BLOB storage. The following listing shows the HTML that runs the ZX Spectrum emu-
lator Silverlight application (ZXSilverlight.app).

<html xmlns="http://www.w3.org/1999/xhtml" >
<head>
 <title>Silverlight Project Test Page </title>

 <style type="text/css">
 html, body {height: 100%; overflow: auto;}
 #silverlightControlHost {height: 100%;}
 </style>
 <script type="text/javascript" src="Silverlight.js"></script>
</head>
<body>
 <div id="silverlightControlHost">
 <object data="data:application/x-silverlight,"
 type="application/x-silverlight-2"
 width="100%" height="100%">
 <param name="source" value="ZXSilverlight.xap"/>
 <param name="background" value="white" />
 </object>
 </div>
</body>
</html>

Listing 10.2 HTML for the ZX Spectrum emulator Silverlight application

Figure 10.6 Silverlight application running in BLOB
storage

Specifies
Silverlight
plug-in

Specifies
Silverlight 2
application

Specifies location
of Silverlight

application

217Hosting Silverlight applications in BLOB storage
By looking at listing 10.2, you can see that the HTML page doesn’t have any logic in it.
Its job is to host the Silverlight application. Because this web page is just a host for a
Silverlight application, using a full-fledged web server would be a little over the top
(and expensive); a static HTML page hosted in BLOB storage will do the job perfectly.

TIP If you have an existing web page that you host outside BLOB storage
(you’re using a web role or an existing web hosting provider to host it), you
can still host your Silverlight application in BLOB storage but keep your site
with your existing host. To do so, you need to change the source parameter
of the Silverlight plug-in (see listing 10.2) to point to your BLOB storage URI.

This standalone Silverlight application doesn’t require access to any backend web ser-
vices, but what if you want to host an application that does? You can still host your
application in BLOB services, but you’ll need to understand how a cross-domain pol-
icy works.

10.2.2 Communicating with third-party sites

Suppose your Silverlight application requires communication with an external website
or web service (WCF, ASMX, REST, POX, or HTTP). For example, what if you want to
host a Silverlight exchange rate calculator?

 Your Silverlight application needs to
poll a web service for live data, so you
might be thinking that you should host
your entire solution as an ASP.NET-
hosted website. Although this is a per-
fectly valid solution, it’s still quite
expensive for what you require. In this
scenario, it might be more cost effective
to host your web service in ASP.NET (or
use a third-party service if one is avail-
able), but host your Silverlight application (and website) in BLOB storage. Figure 10.7
shows a Silverlight application communicating with an external web service.

 For the Silverlight application to communicate with a third-party domain, the
external site must host a suitable cross-domain policy.

HOSTING A CROSS-DOMAIN POLICY

The following listing shows a typical cross-domain policy file (ClientAccessPolicy.xml)
used to give permissions to a Silverlight application.

<?xml version="1.0" encoding="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from http-request-headers="*">

Listing 10.3 ClientAccessPolicy.xml file for Silverlight permissions

HTML page BLOB
Silverlight application BLOB

BLOB storage
Currency web service

Browser
(running SL app)

Figure 10.7 Silverlight application
communicating with an external web service

218 CHAPTER 10 When the BLOB stands alone
 <domain uri="http://silverlightukstorage.blob.core.windows.net/"/>
 </allow-from>
 <grant-to>
 <resource path="/" include-subpaths="true"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

The ClientAccessPolicy.xml file displayed in listing 10.3 states at q that any Silverlight
application hosted at http://silverlightukstorage.blob.core.windows.net/ (the BLOB
storage account of your Silverlight application) can access the third-party web service.
Your application would also be able to access the service if the domain URI at q was
set to *, which would indicate that any Silverlight application hosted at any website
could access it.

 ClientAccessPolicy.xml is a cross-domain policy file that’s used solely by Silverlight
applications. Silverlight applications can also access web services that host a CrossDo-
main.xml file (a format that’s supported by both Flash and Silverlight). The following
listing shows a CrossDomain.xml file that your BLOB storage-hosted application could
communicate with.

<?xml version="1.0" ?>
<!DOCTYPE cross-domain-policy SYSTEM
➥ "http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <allow-access-from domain="*" />
</cross-domain-policy>

The CrossDomain.xml file displayed in listing 10.4 states at q that any website host-
ing a browser-based application (Silverlight or Flash) can communicate with this ser-
vice. If the owner of the web service wanted to restrict access to your application only,
then it would replace the * at q with silverlightukstorage.blob.core.windows.net
(your BLOB storage account).

Cross-domain policy

For security purposes, Silverlight applications (and Flash applications) can, by default,
communicate only with the domain that the container web page is hosted on. If your
Silverlight application needs to communicate with a third-party domain, the external
website needs to host a cross-domain policy file (ClientAccessPolicy.xml or CrossDo-
main.xml) to give your application permission to communicate with it.

Listing 10.4 CrossDomain.xml file

q
URI of BLOB

storage domain

q
Allows access
to all domains

219Hosting Silverlight applications in BLOB storage
Now let’s build a Silverlight web search application that uses Yahoo’s Search API to
search the internet.

BUILDING A SILVERLIGHT WEB SEARCH APPLICATION

Figure 10.8 shows the Silverlight application that we’re going to show you how to build.
 The HTML page for the application that you’re going to build (shown in figure

10.8) is no different from the one in listing 10.2 (well, there is one small difference:
the source parameter value references the new Silverlight application (.XAP file).

 To create the application, create a new Silverlight application as you normally
would; then rename the default XAML (Extensible Application Markup Language) to
YahooSearch.xaml. Replace the default Grid provided in the template with the XAML
shown in the following listing.

<Grid x:Name="LayoutRoot" Background="White">
 <StackPanel>
 <StackPanel Orientation="Horizontal">

$root container

If you need to allow third-party Silverlight or Flash applications to access assets held
in your BLOB storage account, store your CrossDomain.xml or ClientAccessPolicy.xml
file in a public container named $root.

This special container allows you to store any file in the root of your URI, for example:
http://chrishayuk.blob.core.windows.net/crossdomain.xml.

Listing 10.5 XAML for Silverlight web search application

Figure 10.8 A Silverlight search application hosted in BLOB storage that communicates with
the Yahoo Search API.

220 CHAPTER 10 When the BLOB stands alone
 <TextBlock Text="Search Yahoo"
 VerticalAlignment="Top"
 Margin="5"/>
 <TextBox x:Name="txtSearch"
 VerticalAlignment="Top"
 Height="25" Width="200"
 Margin="5"/>
 <Button x:Name="btnSearch"
 Content="Search"
 VerticalAlignment="Top"
 Height="25" Width="50"
 Margin="5"
 Click="btnSearch_Click"/>
 </StackPanel>
 <ItemsControl x:Name="itemsResults">
 <ItemsControl.ItemTemplate>
 <DataTemplate>
 <Grid Margin="10">
 <Grid.RowDefinitions>
 <RowDefinition Height="25"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>
 <HyperlinkButton
 Grid.Row="0"
 Content="{Binding Title}"
 NavigateUri="{Binding Url}"/>
 <TextBlock
 Grid.Row="1"
 Text="{Binding Summary}"
 TextWrapping="Wrap">
 </TextBlock>
 </Grid>
 </DataTemplate>
 </ItemsControl.ItemTemplate>
 </ItemsControl>
 </StackPanel>
 </Grid>

After you’ve pasted the XAML in listing 10.5 into your Silverlight page, you can hook
up the code-behind for the page, as shown in listing 10.6.

public partial class YahooSearch : UserControl
{
 public YahooSearch()
 {
 InitializeComponent();
 }

 private void btnSearch_Click(object sender, RoutedEventArgs e)
 {
 Search mySearch = new Search();
 mySearch.SearchResultsReturned += new
 ➥ Search.SearchResultReturnedDelegate
 ➥ (mySearch_SearchResultsReturned);

Listing 10.6 Code-behind for Silverlight web search application XAML page

Enters the
search term

Displays the
search results

221Hosting Silverlight applications in BLOB storage
 mySearch.Execute(txtSearch.Text);
 }

 void mySearch_SearchResultsReturned(SearchResultSet results)
 {
 itemsResults.ItemsSource = results.Results;
 }
}

In the code-behind for the Silverlight page shown in listing 10.6, you can see that
when the Search button is clicked, the execute method of your Search class is
invoked at q. The search term is sent to the Yahoo Search API, and then the results
are returned asynchronously. When the search results are received, the results are
bound to the data grid at w.

 Listing 10.7 shows the code-behind for the Yahoo Search class.

 public class Search
 {
 public delegate void SearchResultReturnedDelegate
 ➥ (SearchResultSet results);
 public event SearchResultReturnedDelegate SearchResultsReturned;

 private const string _baseUri =
 ➥ "http://search.yahooapis.com/WebSearchService/
 ➥ V1/webSearch?appid={0}&query={1}&start={2}&results={3}";
 private const string _applicationId =
 ➥ @"Jk.kKH_V34FIj5WGgtm6iimK.37hiKF
 ➥ 0A5EVnJkoltzGoydU.Z0notpjqa0DxTiJULlbg--";

 public void Execute(string keyword)
 {

 Uri searchUri = new Uri(string.Format
 ➥ (_baseUri, _applicationId, keyword,1,5));

 Execute(searchUri);
 }

 private void Execute(Uri address)
 {

Yahoo Search

Yahoo was a popular search engine many years ago, at a time before we Googled for
everything. Here at Azure in Action, we like to support the little guy; come on Yahoo,
you can be big again.

Actually, the reason we use Yahoo is that it has a nice, simple, REST-based API that
we can easily use from Silverlight.

Listing 10.7 Code-behind for the Yahoo Search class

q
Sends search request
to Yahoo API

w
Binds results of
search to data grid

Calls the search

222 CHAPTER 10 When the BLOB stands alone
 WebClient searchClient = new WebClient();

 searchClient.DownloadStringCompleted +=
 ➥ new DownloadStringCompletedEventHandler
 ➥ searchClient_DownloadStringCompleted);

 searchClient.DownloadStringAsync(address);
 }

 void searchClient_DownloadStringCompleted
 (object sender, DownloadStringCompletedEventArgs e)
 {

 if (SearchResultsReturned != null)
 {

 XElement xeResult = XElement.Parse(e.Result);

 SearchResultSet resultSet =
 ➥ new SearchResultSet(xeResult);

 SearchResultsReturned(resultSet);
 }
 }
 }

 public class SearchResultItem
 {
 public string Title { get; set; }
 public string Summary { get; set; }
 public Uri Url { get; set; }
 }

 public class SearchResultSet
 {

 public SearchResultSet()
 {

 Results = new List<SearchResultItem>();
 }

 public SearchResultSet(XElement resultsXml)
 {

 Results = new List<SearchResultItem>();

 XNamespace ns = "urn:yahoo:srch";

 var xeResults = from xeResult in
 ➥ resultsXml.Elements(ns + "Result")
 select new SearchResultItem
 {

Returns the
search results

LINQ to reform
the results

223Using BLOB storage as a media server
 Title = xeResult
 ➥ .Element(ns + "Title").Value,
 Summary = xeResult
 ➥ .Element(ns + "Summary").Value,
 Url = new Uri(
 ➥ xeResult.Element(ns + "Url").Value)
 };

 Results.AddRange(xeResults);
 }

 public List<SearchResultItem> Results { get; set; }

 }

We’re not going to spend any time explaining the code in listing 10.7, except to say
that it makes an HTTP request to the Yahoo Search API and returns a set of results that
you can bind to your Silverlight data grid.

 Now that you have an idea of how to store static HTML websites and Silverlight
applications in BLOB storage, let’s look at how you can use BLOB storage as a media
server.

10.3 Using BLOB storage as a media server
In this section, we’ll return to our podcasting example. Previously, you’ve used BLOB
storage as a place to store your video and audio podcasts; now you’re going to use
BLOB storage as a mechanism for serving your videos to customers.

 Because BLOB storage provides a URI for any files held in public containers, you
could just make the link available to your customers to download the files offline, for
example, http://storageaccount.blobs.core.windows.net/container/mypodcast.wmv.
This probably wouldn’t provide the greatest user experience in the world.

 An alternative to downloading an entire media file is to use streaming. When
media is streamed, the streaming server starts sending a byte stream of the video to
the client. The client media player creates a buffer of the downloaded bytes, and starts
playing the video when the buffer is sufficiently full. While the user is watching the
video from the buffer, the client continues to download the data in the background.

 Media streaming lets the user start watching the video within seconds, rather than
requiring the user to wait for the entire movie to download. If the user decides to
watch only the first few seconds of the movie, the service provider will have served up
only some of the movie, which results in cheaper bandwidth bills. Unfortunately,
streaming isn’t currently available as an option in Windows Azure and the Windows
Azure BLOB storage service. If you want to use such a solution, you need to use a third-
party streaming service.

 An even better solution is to use progressive downloading, in which a file is down-
loaded in small chunks and is stitched together by the client application. After a few
chunks are downloaded, the client application can start playing the movie while the
rest of the file chunks are downloaded in the background. Progressive downloading

224 CHAPTER 10 When the BLOB stands alone
has the same performance advantages as streaming and provides a similar user experi-
ence. The main difference between progressive downloading and streaming is that
the file being streamed never physically resides on disk and remains only in memory.

10.3.1 Building a Silverlight or WPF video player

By default, Silverlight supports the ability to progressively download files. In this
example, we’ll tell you how to build a small Silverlight video player that will allow you
to play movies on your web page that are hosted by BLOB storage. Figure 10.9 shows a
small video player that you’ll build. The video player is playing a video served directly
from BLOB storage using the public URI.

 You can build a WPF or Silverlight media player like that shown in figure 10.9 by
creating a WPF or Silverlight application and using the following XAML:

<MediaElement x:Name="myVideo"
➥ Source="http://storageaccount.blobs.core.windows.net
➥ /container/videopodcast01.wmv"
/>

Wow, is that really it? Yup, that’s how easy it is to create a progressive downloading
video player that shows videos hosted in BLOB storage.

 Although Silverlight does progressively download the video player, the download is
performed in a linear fashion, downloading from a single file, from a single website. If
you have very large files (they’re up to gigabytes), you might want to use a slightly dif-
ferent technique. For large files, you can download video much faster if you split up
and chunk your files manually (and eventually split them across multiple servers).

Figure 10.9 WPF video player showing a video that features a giant bunny rabbit
(Big Buck Bunny)

225Using BLOB storage as a media server
10.3.2 A WPF-based adaptive-streaming video player

Now we’re going to tell you how to build a WPF-based media player that can adaptively
stream your video. Your media player will look exactly like the WPF media player dis-
played in figure 10.9.

 Adaptive streaming is a technique that most content delivery networks (CDNs) use
to deliver high-performance video. This technique is also used in IIS adaptive stream-
ing, although BLOB storage won’t deliver in multiple bitrates.

WARNING The following code is intended as an example to show you how
you can use adaptive streaming. This isn’t production-quality code (not by a
long shot).

PLAYING THE VIDEO

The following XAML is used to play the video in WPF:

<MediaElement x:Name="myVideo" Source="videopodcast01.wmv"
 LoadedBehavior="Manual"/>

MediaElement is a built-in control that allows you to play movies in WPF applications.
In this example, we’re downloading the movie (mymovie.wmv) to the same folder that
the WPF movie player application resides in. The source attribute states where the
MediaElement should look for the movie.

 By default, the MediaElement automatically starts playing the movie on startup.
Because the movie hasn’t been downloaded yet, you need to prevent the movie from
automatically playing by setting the attribute LoadedBehavior to Manual.

THE CHUNKING METHODOLOGY FOR WPF

You’re going to download the movie in chunks of 100 Kb. Only one chunk will be
downloaded at a time and each newly downloaded chunk will be appended to the pre-
viously downloaded chunk. Listing 10.8 shows that as soon as the movie player is
loaded, it starts downloading the chunks. After 10 seconds, the movie starts playing.

private void Window_Loaded(object sender, RoutedEventArgs e)
{
 movieStream =
 File.Open("videopodcast01.wmv",
 FileMode.Append, FileAccess.Write, FileShare.ReadWrite);

GetNextChunk();
Thread.Sleep(10000);
myVideo.Play();
}

Before we look more carefully at the code used to progressively download the video,
let’s talk a bit about the Range header.

Listing 10.8 Chunking movies with the WPF movie player

Creates empty
movie file

Starts downloading video
from BLOB storageWaits 10 seconds

Starts playing video

226 CHAPTER 10 When the BLOB stands alone
USING THE RANGE HEADER

When a GET request is made using either the storage client or via an HTTP request, the
entire file is downloaded by default. The code shown in listing 10.9 will download
videopodcast01.wmv from the public container, podcasts.

 CloudStorageAccount account =
 CloudStorageAccount.FromConfigurationSetting("DataConnectionString");

CloudBlobClient blobClient =
 account.CreateCloudBlobClient();

CloudBlobContainer container =
 blobClient.GetContainerReference("podcasts");

container.GetBlobReference("videopodcast01.wmv");
container.DownloadFile("videopodcast01.wmv");

The code in listing 10.9 will download the entire movie; in this example, we want to
split the movie up into manageable chunks. Currently, the storage client sample code
doesn’t provide the ability to download a specified portion of the file, even though the
underlying REST API does support this. The code shown in listing 10.10 will download
the entire podcast using HttpWebRequest.

string baseUri = @"http://silverlightukstorage.blob.core.windows.net/";
HttpWebRequest hwr =
 CreateHttpRequest(new Uri(baseUri +"podcasts/videopodcast01.wmv"),
 "GET", new TimeSpan(0, 0, 30));
// TODO: Range Header goes here
DownloadFile(hwr," videopodcast01.wmv");

At q, you generate the HttpWebRequest with the standard required headers using the
CreateHttpRequest method that we used in chapter 8. At e, you use the Download-
File method to invoke the request and download the file to disk. The implementa-
tion of the DownloadFile method is available in the online samples.

 If you don’t want to download the entire video file, you can use the Range header
to specify the range of bytes that you want to download. The following code would
restrict the download to the first 100,000 bytes of the file, and can be used in listing
10.10 at w:

hwr.AddRange(0, 100000);

Not only can you restrict the number of bytes using the Range header, you can also use
it to progressively download the file in chunks.

Listing 10.9 Using the storage client to download a video file

Listing 10.10 Using HttpWebRequest to download a video file

Gets podcasts
container

Gets reference to BLOB
videopodcast01.wmv

Downloads
videopodcast01.wmv
BLOB

q Generates HttpWebRequest

w
Restricts download
size using
Range headere

Downloads
the file

227Using BLOB storage as a media server
DOWNLOADING CHUNKS OF DATA

When the WPF movie player was loaded, we made a call to GetNextChunk() in listing
10.8. In listing 10.11, we show you how GetNextChunk is implemented, and how to use
the Range header to progressively download the movie.

private int size 100000;
private int nextSize = 0;
private Stream movieStream;

private void GetNextChunk()
{
string baseUri = @"http://silverlightukstorage.blob.core.windows.net/";
HttpWebRequest hwr =
 CreateHttpRequest(new Uri(baseUri +"podcasts/videopodcast01.wmv"),
 "GET", new TimeSpan(0, 0, 30));

hwr.AddRange(nextRange, nextRange + size);
nextRange += (size + 1);
hwr.BeginGetResponse(new AsyncCallback(webRequest_Callback), hwr);
}

private void webRequest_Callback(IAsyncResult asynchronousResult)
{
 try
 {
 HttpWebRequest request =
 (HttpWebRequest)asynchronousResult.AsyncState;

 HttpWebResponse response =
 (HttpWebResponse)request.EndGetResponse(asynchronousResult);

 SaveChunk(response.GetResponseStream());
 response.Close();

 GetNextChunk();
 }
 catch { }
}

private void SaveChunk(Stream incomingStream)
{
 int READ_CHUNK = 1024 * 1024;
int WRITE_CHUNK = 1000 * 1024;
byte[] buffer = new byte[READ_CHUNK];

Stream stream = incomingStream;

while (true)
{

Listing 10.11 Downloading the data in chunks

Creates
web request

q

Adds Range header to
restrict download sizew

eMakes request, providing callback

r
The callback
function

t
Saves downloaded
file section

228 CHAPTER 10 When the BLOB stands alone
 int read = stream.Read(buffer, 0, READ_CHUNK);
 if (read <= 0)
 break;
 int to_write = read;

 while (to_write > 0)
 {
 movieStream.Write(buffer, 0, Math.Min(to_write, WRITE_CHUNK));
 to_write -= Math.Min(to_write, WRITE_CHUNK);
 }
}
}

The GetNextChunk method will download 100 Kb of data from the BLOB storage ser-
vice asynchronously. This method will be called every time you need to download a
new chunk of video; it’s called for the first time when the application is loaded in the
fourth line in listing 10.8.

 In listing 10.11, you create a standard HTTP web request at q; this is the same
method that you used to create requests earlier. The video (videopodcast01.wmv) that
you’re downloading resides in a public container called podcasts that’s held in your
storage account. After you’ve created the request, you add the Range header w to
restrict the download to the next 100 Kb chunk.

 At e you’re making an asynchronous HTTP web request to the BLOB storage ser-
vice, with a callback to r. On the request callback r, the downloaded data is
retrieved, and you call the SaveChunk method t, which will append the downloaded
chunk to the videopodcast01.wmv file on the local disk. Finally, you call GetNextChunk
again to get the next chunk of data.

Now you have a working version of a WPF progressive-downloading media player, which
shows that you can use BLOB storage as a storage service for desktop clients. With some
tweaks you can build media players that perform similarly to a streaming service.

10.3.3 A Silverlight-based chunking media player

In the previous section, we showed you how to build a desktop progressive-download-
ing media player for video podcasts. Although the desktop application is great for that

Time-based buffering

In our simple example, we used time-based buffering to delay the playback of the mov-
ie. Although time-based buffering is suitable for our example, in a production scenario
you should start playing the movie after a portion of the movie has been downloaded.
We also don’t make any provision for variable download speeds; you might want to
extend the sample to handle situations in which the playback speed is faster than
the download speed.

229Using BLOB storage as a media server
richer client experience, we also want to show you how to provide a web-based cross-
platform Silverlight experience.

CHUNKING VIDEO IN SILVERLIGHT

Go back to the Silverlight player that you created earlier and modify the XAML to the
following:

<MediaElement x:Name="myVideo" AutoPlay="False"/>

Although the XAML is similar to the WPF version, there are some subtle differences. In
the Silverlight version, you use AutoPlay="False" to specify that you don’t want the
video to play automatically; in the WPF version, you set LoadedBehavior="Manual".
You’re also not going to set a source for the MediaElement; you’ll do this program-
matically in the code-behind.

 Listing 10.12 shows the On_Load event of the Silverlight media player.

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{

 GetNextChunk();
 Thread.Sleep(10000);
 using (IsolatedStorageFile isf =

IsolatedStorageFile.GetUserStoreForApplication())
 {
 var iosf = isf.OpenFile("videopodcast01.wmv",
 ➥ FileMode.Open,
 ➥ FileAccess.Read,
 ➥ FileShare.ReadWrite);
 myVideo.SetSource(iosf);
 myVideo.Play();
 }
}

At q the code calls GetNextChunk to start downloading the chunks of data and at w
playing the video is delayed for 10 seconds by sending the thread to sleep. At e the
video starts playing back from isolated storage.

WARNING Sending the thread to sleep is bad production practice. You should
never send the UI thread to sleep. In production, use a background timer that
monitors the download progress, and start playing the video back at a suitable
threshold.

THE CHUNKING METHODOLOGY FOR SILVERLIGHT

You’ll use the same methodology to chunk the data that you used in the WPF example.
You’re going to split the data into manageable chunks and then stitch the chunks
back together client-side.

Listing 10.12 On_Load event of the Silverlight media player

Retrieves first
chunk of video

q
Delays start
of video

w

e
Starts playing from
isolated storage

230 CHAPTER 10 When the BLOB stands alone
Although you could split the files using the x-ms-range header (instead of using the
Range header as you did in the WPF version), it might be kind of interesting to presplit
the files into chunks and store the chunks in BLOB storage.

 To split the files, use the same code that we used in the WPF example, but instead
of stitching the file back together, you’re going to save a separate file for each chunk.
For example, the file VideoPodcast01.wmv would be split into the following chunks:
VideoPodcast01_1.wmv, VideoPodcast01_2.wmv, . . ., VideoPodcast01_12.wmv.

 Finally, you need to upload each chunk to BLOB storage using a tool like Chris
Hay’s Azure Blob Browser.

TIP By presplitting the files, you can potentially distribute the files across a
greater number of servers (or even domains). Distributing files in this way
would be useful if you decided to use a content delivery network (CDN) (dis-
cussed later in this chapter) in combination with BLOB storage. You could
also instruct the browser to cache the chunks (see chapters 6 and 9); if the file
wasn’t fully downloaded, the next download would be much quicker.

To use the presplit version of the chunks, your Silverlight application needs to use the
following code to replace the WPF version of the GetNextChunk method:

private void GetNextChunk()
{
string baseUri = @"http://silverlightukstorage.blob.core.windows.net/";
string videoUri = baseUri+"podcasts/videopodcast01_"+nextRange+".wmv";
nextRange++;
HttpWebRequest hwr =
 CreateHttpRequest(new Uri(videoUri), "GET", new TimeSpan(0, 0, 30));
hwr.BeginGetResponse(new AsyncCallback(webRequest_Callback), hwr);
}

This code manually requests the chunk that’s stored in your container by continually
incrementing the chunk in the URI for each download request.

 The major difference between this example and using adaptive streaming is that
we don’t have multiple encodings of the video at different bitrates. You could easily
modify these samples to have videos encoded at different bitrates available and to
detect the best bitrate for the client.

Restricted headers

The browser plug-in model prevents the use of certain request headers because they’re
considered reserved and are available only to the browser. The following restricted
headers are used by BLOB storage APIs and are unavailable to use in Silverlight:
Authorization (discussed in the section “Setting shared access permissions” in
chapter 9), Date (you can use x-ms-date as a workaround), and Range (you can use
x-ms-range as a workaround).

231Using BLOB storage as a media server
SAVING TO ISOLATED STORAGE

Silverlight can directly access the filesystem only via a user-initiated action. Silverlight
applications can, however, write data directly to an isolated storage area without user
initiation.

In the Silverlight version of the media player, you’re going to use the isolated storage
area to save the video locally. Although the video podcast has been presplit into
chunks, you still have to combine the chunks into a single file so the media player can
play back the video. The method of saving and combining the chunks is similar to that
used in the WPF version except that you’re using isolated storage. Listing 10.13 shows
the Silverlight version of SaveChunk.

private void SaveChunk(Stream incomingStream)
{
int READ_CHUNK = 1024 * 1024;
 int WRITE_CHUNK = 1000 * 1024;
 byte[] buffer = new byte[READ_CHUNK];
 using (IsolatedStorageFile isf =
 ➥ IsolatedStorageFile.GetUserStoreForApplication())
 {
 using (IsolatedStorageFileStream isostream = new
 ➥ IsolatedStorageFileStream("videopodcast01.wmv",
 ➥ FileMode.Append, FileAccess.Write,
 ➥ FileShare.ReadWrite, isf))
 {
 Stream stream = incomingStream;
 stream.Position = 0;

 while (true)
 {
 int read = stream.Read(buffer, 0, READ_CHUNK);
 if (read <= 0)
 break;
 int to_write = read;

 while (to_write > 0)
 {
 isostream.Write(buffer,
 ➥ 0,
 ➥ Math.Min(to_write, WRITE_CHUNK));

Saving to the actual filesystem

If you don’t mind user-initiated actions, you can always use the SaveFileDialog rath-
er than isolated storage.

You need to be aware that if you’re downloading files of any real size, you’ll probably
need a user-initiated action to increase the isolated storage default limits. In this case,
you’d probably do just as well to use the SaveFileDialog.

Listing 10.13 SaveChunk for Silverlight

Gets isolated storage
area for Silverlight

application

Appends chunk
to video in

isolated storage

232 CHAPTER 10 When the BLOB stands alone
 to_write -= Math.Min(to_write, WRITE_CHUNK);
 }
 }
 isostream.Close();
 }
 }
}

Although you’ve had to do some slight workarounds, now you’ve got a working ver-
sion of the media player in Silverlight.

 Congratulations! You’ve built a WPF video player and a Silverlight video player.
Now let’s look at how you can improve the performance of the video delivery by using
content delivery networks (CDNs).

10.4 Content delivery networks
If your website customers are geographically dispersed, using a CDN can significantly
improve the user experience. In this section, we’ll discuss CDNs and how you can use
them in conjunction with the Windows Azure BLOB storage service.

10.4.1 What’s a CDN?

A CDN is a large number of web servers that are distributed across the world. These
web servers usually sit close to the internet backbone and can quickly serve up large
files. When a user makes a request to the CDN for a file, the CDN figures out which
data center in the CDN is closest to the user’s location and serves up the content from
that data center.

 Figure 10.10 shows that if you’re based in Edinburgh, your files are served from
the Dublin data center, rather than from one in Hong Kong.

 In a CDN, a user makes a request via the nearest edge server and the origin server
answers the request. Let’s look at these servers in more detail.

EDGE SERVERS

Figure 10.10 shows that the CDN network has the following data centers

� Los Angeles
� New York
� Dublin
� London
� Dubai

Washington

Los Angeles New York

Dublin

London Dubai Hong Kong

Tokyo

Edinburgh

CDN edge server
Origin server
You are here

Figure 10.10 A CDN delivers files
using the server closest to you.

233Content delivery networks
� Hong Kong
� Tokyo

These data centers, which are represented by circles in figure 10.10, are known as
edge servers. An edge server is the name used for one of the geographically dispersed
web servers that are responsible for serving your content.

ORIGIN SERVER

The origin server is the web server that contains the original version of the content
being distributed. In figure 10.10, the origin server is represented by the triangle and
resides in Washington State. For Windows Azure, the origin server could be either
your web role or a public container in your BLOB storage account. The content held
on your origin server would never be accessed directly by your end user; the origin
server only serves content to the edge servers.

 When a request is made for a file held in a CDN, the request is redirected to the
nearest edge server. If the edge server doesn’t have a local copy of that file, it requests
the file from the origin server and caches it locally.

NOTE A CDN web server is similar to a BLOB storage web server; it can serve
up any static file with the correct MIME type, but it has no backend server pro-
cessing capabilities. For this reason, a CDN is suitable for serving up static con-
tent such as HTML, JavaScript, CSS, Silverlight and Flash applications, PDF
documents, audio files, videos, and so on.

10.4.2 CDN performance advantages

Using a CDN network is a simple method of improving performance on your web serv-
ers without significantly changing your architecture or code. How so, you ask? Well,
read on.

REDUCED LOAD FROM YOUR WEB APPLICATION SERVERS

If your static content is offloaded from your web application servers, your web servers
will have more capacity to handle incoming requests. The reduced load will reduce
active connections, CPU use, and network traffic on the server.

INCREASED CLIENT-SIDE PERFORMANCE

The largest bottleneck on web applications tends to be the time it takes to download
static content from the web server, not the time it takes to serve the HTML page. Fig-
ure 10.11 shows the number of requests made to www.manning.com and the length of
time it has taken for the content to be served.

 If you look carefully at figure 10.11, you’ll see that it takes only 1.72 seconds to
serve up the HTML page, but an additional 3.5 seconds to serve the static content. This
extra time is used because most internet browsers (including Firefox and Internet
Explorer) can download only two files simultaneously from the same domain. If more
than two files are requested at the same time, all other requests from the same domain
are queued. The graph in figure 10.12 shows that the .gif files from manning.com are
being downloaded only two files at a time, but the files being served from google-ana-
lytics.com can be downloaded at the same time as the manning.com gifs.

234 CHAPTER 10 When the BLOB stands alone
A CDN moves static content to other subdomains, which allows the browser to simulta-
neously download more files and reduces the time it takes to render content on the
client browser.

 With the reduced network latency, faster internet connections, and the increased
number of distributed web servers, any static content served from the CDN is delivered
more quickly than it would be from a standard web server.

OK, you’ve got the message that you need to use CDNs, so pay close attention while we
tell you how to use them with Windows Azure.

10.4.3 Using the Windows Azure CDN

So far, we’ve looked at CDNs from a generic standpoint; in this section, we’ll take a
look at what options are available in Windows Azure. In particular, we’ll look at how
you can use Windows Azure as an origin server and what options you have regarding
edge servers.

Using CDNs means your web server does less work

Any request that you can push off to the CDN (images, movies, CSS, JavaScript) results
in fewer files that the web servers hosting your web application need to serve. Ulti-
mately, this means that to meet the demands of your web traffic, you’ll need fewer
web role instances, which saves you money. Now, that’s a good thing.

Figure 10.11 Comparison of the number of seconds it takes to serve HTML pages versus the number
of seconds it takes to download the static content at www.mannning.com

235Content delivery networks
 Although in this section we’re showing you how to use the Windows Azure CDN
(c’mon, it’s a Windows Azure book, after all), you can use other CDN providers, such
as Akamai and Amazon Cloud Front. As you’re about to discover, using the Windows
Azure CDN is probably the easiest option (we have no idea whether it’s the cheapest;
you’ll need to use our JavaScript calculator to work that one out).

USING BLOB STORAGE AS AN ORIGIN SERVER

Although web roles can be used as origin servers with non-Windows Azure CDNs,
using them is a more expensive option than using BLOB storage. Because edge servers
can serve only static content, there’s no need for them to be able to generate dynamic
server-side content. An efficient cost-effective solution is to use your storage account
as an origin server rather than use a web role.

NOTE With the Windows Azure CDN, you can use only BLOB storage as an ori-
gin server; you can’t use web roles.

To use our movie player example, the original version of the Big Buck Bunny movie,
or even the original presplit chunk files, would be stored in BLOB storage, and BLOB
storage would act as the origin server.

ENABLING THE WINDOWS AZURE CDN

To enable the Windows Azure CDN, open the storage account in the Windows Azure
Developer portal and click Enable CDN, as shown in figure 10.12.

After you click this button, any BLOBs stored in public containers will be available on
the CDN after about an hour. Figure 10.13 shows the Developer portal after your CDN
account has been enabled.

Figure 10.12 Enabling a CDN in the Windows Azure Developer portal

Figure 10.13 An enabled CDN account in the Windows Azure Developer portal

236 CHAPTER 10 When the BLOB stands alone
A new custom domain is assigned to your CDN-enabled BLOBs. In figure 10.13, the CDN
domain is http://az1903.vo.msecdn.net/. All you need to do now is replace where we
used http://chrishayuk.blob.core.windows.net/ with http://az1903.vo.msecdn.net/,
and the files will start being fed from the Windows Azure CDN instead of from our BLOB
storage account.

 If you don’t like the assigned subdomain, you can assign your own custom domain
to the CDN domain; for details on how to do that, see chapter 8.

TIP If you want to improve the amount of parallel downloads on your site,
assign half your assets to the assigned CDN domain, and the other half to a
custom domain name.

10.5 Summary
Over the course of part 4 (chapters 8, 9, and 10), we’ve explored BLOB storage pretty
thoroughly and you should now be able to use this storage service effectively in your
applications.

 In this chapter, you’ve discovered that BLOB storage can be more than just a hard
disk for your web and worker roles. BLOB storage is a powerful storage mechanism
that can do the following things for you:

� Host static websites
� Host RIAs, such as Silverlight
� Act as a media server
� Host assets for your existing websites (Azure or non-Azure hosted websites)
� Act as a CDN

We’re going to move away now from BLOB storage and build upon the knowledge you
gained with this storage service and look at another part of the storage services puzzle,
the Table service.

Part 5

Working with structured data

Now that you have working with files under your belts, we can turn our
attention to how to work with structured data. There are two options in Azure.

 Chapter 11 covers the first option, Azure Table storage. This stuff is really dif-
ferent from your dad’s SQL Server and relational data engines. Take off your
mental blinders or your mind will be blown!

 Don’t like to work with high-level APIs? Do you prefer to set the value of AX
yourself? Then chapter 12 is for you. Chapter 12 looks at how to work with Azure
tables, using the REST interface. Hardcore stuff, but easy for you.

 For those who had their minds blown in chapter 11, we’ll put them back
together again when we cover SQL Azure in chapter 13. Have an app you want to
move to the cloud, but you’re using an old-fashioned relational data model? You
can easily move to the cloud using SQL Azure and all its foreign-key-indexed-rela-
tionships-and-transactions supporting goodness.

 Finally, we polish off part 5 with chapter 14 and look at how and when you
might choose Azure tables and SQL Azure. We try to end the debate in a peaceful
way and help you make solid decisions for your data platform.

The Table service,
a whole different entity
In typical web applications, you’d normally store your data in a relational database,
such as SQL Server. SQL Server is great at representing relational data and is a suit-
able data store for many situations, but it’s very difficult to design scalable SQL
Server databases at low cost. To get around the problems of scalability, Windows
Azure provides its own table-based storage mechanism called the Table service.

This chapter covers
� Introducing the Table service

� Getting started developing with the Table
service

� Using the Table service in a production
environment

Problems of scale in relational databases

As the web server load increases for a site, you may need to scale up the number
of servers to cope with the increase in demand. But what do you do if you need to
239

240 CHAPTER 11 The Table service, a whole different entity
Let’s now take a brief look at what the Table service is.

11.1 A brief overview of the Table service
The Table service component of the Windows Azure storage services (which includes
the BLOB service, Table service, and Queue service) is a very simple, highly scalable,
cost-effective solution that can be used to store data. In many scenarios it can replace
traditional SQL Server–based designs.

NOTE Like all other storage services, the Table service is hosted within the
Windows Azure data centers, leveraging the web role infrastructure. Access to
the service is provided through an HTTP-based REST API. For more details on
the infrastructure of the service see chapter 9.

The Table service provides you with the ability to create very simple tables that you can
use to store serialized versions of your entities. Figure 11.1 shows how entities are
stored in the Table service.

 In figure 11.1 you can see that there are two tables (Products and ShoppingCart)
in a storage account (silverlightukstorage). The Products table could represent the
product list for the Hawaiian Shirt Shop website that we introduced in chapter 2, and
each entity stored in the Products table (Red Shirt, Blue Shirt, and Blue Frilly Shirt)
would represent different types of shirts.

 It’s important to point out that although the Table service offers the ability to store
data in tables, it’s an entity storage mechanism, not a relational database. That means
it doesn’t offer the sort of functionality that you may be used to:

� It can’t create foreign key relationships between tables.
� It can’t perform server-side joins between tables.
� It can’t create custom indexes on tables.

(continued)
increase the capacity of your data store? Unfortunately, most databases aren’t de-
signed to scale beyond a single server, which means the only way to cope with the
increase in demand is either to scale up your hardware or redesign your application.

Although it’s possible to design scalable federated databases with SQL Server, the
licensing costs, the design complexity, the cost of development, and the operational
costs of running such a system make it very difficult to justify for many companies on
a budget.

Account name

Account

Table name

Table

Entity

silverlightukstorage

Products ShoppingCart
Red Shirt
Blue Shirt

..

Blue Frilly Shirt

Item 1
Item 2
..

Item X

Figure 11.1 The Hawaiian shirts (which are
represented as entities) are stored in the
Products table. Tables are very similar to BLOB
containers (but they hold entities rather than
BLOBs). Like BLOB containers, tables are
housed within your storage account. Here you
can see that the Products and ShoppingCart
tables live in the silverlightukstorage account.

241How we’d normally represent entities outside of Azure
If you do require relational database storage, you can look at SQL Azure, which is a
Windows Azure platform–hosted SQL Server database.

Now that you know what the Table service is and isn’t, it’s nearly time to look at how
entities are stored in the Table service. But before we do that, let’s take a look at how
we’d normally represent data in non-Windows Azure environments.

NOTE In the next section, we’ll look at how we’d represent an entity in a typi-
cal SQL Server solution, and we’ll compare this to Table service solutions. If
you have no patience or are addicted to caffeine and need to get to Table ser-
vice code right now, feel free to skip along to section 11.3.

11.2 How we’d normally represent entities outside of Azure
To keep things simple, we’ll return to the Hawaiian Shirt Shop website that we intro-
duced in chapter 2. Over the next few sections, we’ll look at how we’d typically store
shirt data in a noncloud database. We’ll focus on the following:

� How would we represent a shirt in C#?
� How would we store shirt data in SQL Server?
� How would we map and transfer data between the two platforms?

By understanding how we’d represent our shirt data in typical solutions, we can then
see how this translates to the Table service.

11.2.1 How we’d normally represent an entity in C#

In chapter 2, we defined a Hawaiian shirt using the following data transfer object
(DTO) entity.

public class Product
{
 public int Id { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
}

The Product entity class that we’re using to represent Hawaiian shirts contains three
properties that we’re interested in (Id, Name, and Description).

I always need a relational database, don’t I?

We’ve become a little conditioned to store data in a relational form, even when it’s
not strictly necessary.

If you can expand your mind and accept that there are other ways of storing data, you
can use the Table service to store your data in a highly scalable (and cheaper) fashion.

As you’ll see later in this book, many applications (including shopping carts, blogs,
content management systems, and so on) could potentially use the simple Table ser-
vice rather than a relational database.

242 CHAPTER 11 The Table service, a whole different entity
 In chapter 2, we chose to keep the example simple by hardcoding the list of prod-
ucts rather than retrieving it from a data store such as the Table service or SQL Server.
The following code is a hardcoded list of the three shirt entities displayed in figure
11.1 (Red Shirt, Blue Shirt, and Blue Frilly Shirt).

var products =
 new List<Product>
 {
 new Product
 {
 Id = 1,
 Name = "Red Shirt",
 Description = "Red"
 },
 new Product
 {
 Id = 2,
 Name = "Blue Shirt",
 Description = "A Blue Shirt"
 },
 new Product
 {
 Id = 3,
 Name = "Blue Frilly Shirt",
 Description = "A Frilly Blue Shirt"
 },

};

In the preceding code, we simply defined the list of products as a hardcoded list. Obvi-
ously this isn’t a very scalable pattern—you don’t want to redeploy the application
every time your shop offers a new product—so let’s look at how you can store that data
using a non-Windows Azure environment, such as SQL Server.

11.2.2 How we’d normally store an entity in SQL Server

To store an entity in SQL Server, you first
need to define a table where you can store
the entity data. Figure 11.2 shows how the
Products table could be structured in SQL
Server.

 Figure 11.2 shows a table called Prod-
ucts with three columns (ProductId, Pro-
ductName, and Description). In this table,
ProductId would be the primary key and would uniquely identify shirts in the table.
Table 11.1 shows how the shirt data would be represented in SQL Server.

Figure 11.2 A representation of how you could
store the Hawaiian shirt data in SQL Server

243How we’d normally represent entities outside of Azure
In table 11.1 we’ve enforced a fixed schema in our SQL Server representation of the
Hawaiian shirts. If you wanted to store extra information about the product (a thumb-
nail URI, for example) you’d need to add an extra column to the Products table and a
new property to the Product entity.

 Now that we can represent the Hawaiian shirt product as both an entity and as a
table in SQL Server, we’ll need to map the entity to the table.

11.2.3 Mapping an entity to a SQL Server database

Although you can manually map entities to SQL Server data, you’d typically use a data-
access layer framework that provides mapping capabilities. Typical frameworks
include the following:

� ADO.NET Entity Framework
� LINQ’s many varieties, like LINQ to SQL and LINQ to DataSet
� NHibernate

The following code maps the Products table returned from SQL Server as a dataset to
the Product entity class using LINQ to DataSet.

var products = ds.Tables["Products"].AsEnumerable().Select
 (
 row => new Product
 {
 Id = row.Field<int>("ProductId"),
 Name = row.Field<string>("ProductName"),
 Description = row.Field<string>("Description")
 }
);

In this example, we convert the dataset to an enumerable list of data rows and then
reshape the data to return a list of Product entities. For each property in the Product
entity (Id, Name, and Description) we map the corresponding columns (ProductId,
ProductName, and Description) from the returned data row.

 We’ve now seen how we’d normally define entities in C#, how we’d represent enti-
ties in SQL Server, and how we could map the entity layer to the database. Let’s look at
what the differences are when using the Table service.

Table 11.1 Logical representation of the Products table in SQL Server

ProductId ProductName Description

1 Red Shirt Red

2 Blue Shirt A Blue Shirt

3 Blue Frilly Shirt A Frilly Blue Shirt

244 CHAPTER 11 The Table service, a whole different entity
11.3 Modifying an entity to work with the Table service
Before we look at how we can start coding against the Table service, you need to
understand how your data is stored in the Table service and how that differs from the
SQL-based solution we looked at in the previous sections. In the next couple of sec-
tions, we’ll look at the following:

� How can we modify an entity so it can be stored in the Table service?
� How is an entity stored in the Table service?

As these points suggest, before you can store the shirt data with the Table service, you
need to do a little bit of jiggery pokery with the entity definition. Let’s look at what
you need to do.

11.3.1 Modifying an entity definition

To be able to store the C# entity in the Table service, each entity must have the follow-
ing properties:

� Timestamp

� PartitionKey

� RowKey

Therefore, to store the Product entity in the Azure Table service, you’d have to mod-
ify the previous definition of the Product entity to look something like this:

[DataServiceKey("PartitionKey", "RowKey")]
public class Product
{
 public string Timestamp{ get; set; }
 public string PartitionKey { get; set; }
 public string RowKey { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
}

In the preceding code the original Product entity is modified to include those proper-
ties required for Table storage (Timestamp, PartitionKey, and RowKey). Don’t worry
if you don’t recognize these properties—we’ll explain what they mean shortly.

 To generate a hardcoded list of shirts using the new version of the Product entity,
you’d need to change the hardcoded product list (shown earlier in section 11.2.1) to
something like this:

var products =
 new List<Product>
 {
 new Product
 {
 PartitionKey = "Shirts",

245Modifying an entity to work with the Table service
 RowKey= "1",
 Name = "Red Shirt",
 Description = "Red"
 },
 new Product
 {
 PartitionKey = "Shirts",
 RowKey = "2",
 Name = "Blue Shirt",
 Description = "A Blue Shirt"
 },
 new Product
 {
 PartitionKey = "Shirts",
 RowKey = "3",
 Name = "Frilly Blue Shirt",
 Description = "A Frilly Blue Shirt"
 }

};

As you can see from the preceding code, the only difference is that you’re now setting
a couple of extra properties (PartitionKey and RowKey).

Now that you’ve seen how to modify your entities so that you can store them in the
Table service, let’s take a look at how these entities would be stored in a Table ser-
vice table.

11.3.2 Table service representation of products

In table 11.1 you saw how we’d normally store our list of Hawaiian shirt product enti-
ties in SQL Server, and table 11.2 shows how those same entities would logically be
stored in the Windows Azure Table service.

Look, no Timestamp

Notice that the revised object-creation code doesn’t set the Timestamp property.
That’s because it’s generated on the server side and is only available to us as a read-
only property. The Timestamp property holds the date and time that the entity was
inserted into the table, and if you did set this property, the Table service would just
ignore the value.

The Timestamp property is typically used to handle concurrency. Prior to updating an
entity in the table, you could check that the timestamp for your local version of the
entity was the same as the server version. If the timestamps were different, you’d
know that another process had modified the data since you last retrieved your local
version of the entity.

246 CHAPTER 11 The Table service, a whole different entity
As you can see in table 11.2, entities are represented in the Table service differently
from how they’d be stored in SQL Server. In the SQL Server version of the Products
table, we maintained a fixed schema where each property of the entity was repre-
sented by a column in the table. In table 11.2 the Table service maintains a fairly min-
imal schema; it doesn’t rigidly fix the schema. The only properties that the Table
service requires, and that are therefore logically represented by their own columns,
are Timestamp, PartitionKey, and RowKey. All other properties are lumped together
in a property bag.

EXTENDING AN ENTITY DEFINITION

Because all tables created in the Table service have the same minimal fixed schema
(Timestamp, PartitionKey, RowKey, and PropertyBag) you don’t need to define the
entity structure to the Table service in advance.

 This flexibility means that you can also change the entity class definition at any
time. If you wanted to show a picture of a Hawaiian shirt on the website, you could
change the Product entity to include a thumbnail URI property as follows:

[DataServiceKey("PartitionKey", "RowKey")]
public class Product
{
 public string Timestamp{ get; set; }
 public string PartitionKey { get; set; }
 public string RowKey { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public string ThumbnailUri { get; set; }
}

Once you’ve modified the entity to include a thumbnail URI, you can store that entity
directly in the existing Products table without modifying either the table structure or
the existing data. Table 11.3 shows a list of shirts that include the new property.

Table 11.2 Logical representation of the Products table in Windows Azure

Timestamp PartitionKey RowKey PropertyBag

2009-07-01T16:20:32 Shirts 1 Name: Red Shirt

Description: Red

2009-07-01T16:20:33 Shirts 2 Name: Blue Shirt

Description: A Blue Shirt

2009-07-01T16:20:33 Shirts 3 Name: Frilly Blue Shirt

Description: A Frilly Blue Shirt

247Modifying an entity to work with the Table service
In the list of shirts in table 11.3, you can see that existing shirts (Red Shirt, Blue Shirt,
and Frilly Blue Shirt) have the same data that was stored in table 11.2—they don’t con-
tain the new ThumbnailUri property. But the data for the new shirt (Frilly Pink Shirt)
does have the new ThumbnailUri property.

11.3.3 Storing completely different entities

Due to the flexible nature of the Table service, you could even store entities of differ-
ent types in the same table. For example, you could store the Product entity in the
same table as a completely different entity, such as this Customer entity:

[DataServiceKey("PartitionKey", "RowKey")]
public class Customer
{
 public string Timestamp{ get; set; }
 public string PartitionKey { get; set; }
 public string RowKey { get; set; }
 public string Firstname { get; set; }
 public string Surname { get; set; }
}

As you can see from the Customer entity, although the entity must contain the standard
properties (Timestamp, PartitionKey, and RowKey) no other properties are shared
between the Customer and Product entities; they even have different class names.

 Even though these entities have very different definitions, they could be stored in
the table, as shown in table 11.4. The Table service allows for different entities to have
different schemas.

Table 11.3 The modified entity with a new property can happily coexist with older entities that don’t
 have the new property.

Timestamp PartitionKey RowKey PropertyBag

2009-07-01T16:20:32 Shirts 1 Name: Red Shirt

Description: Red

2009-07-01T16:20:33 Shirts 2 Name: Blue Shirt

Description: A Blue Shirt

2009-07-01T16:20:33 Shirts 3 Name: Frilly Blue Shirt

Description: A Frilly Blue Shirt

2009-07-05T10:30:21 Shirts 4 Name: Frilly Pink Shirt

Description: A Frilly Pink Shirt

ThumbnailUri: frillypinkshirt.png

248 CHAPTER 11 The Table service, a whole different entity
CHALLENGES OF STORING DIFFERENT ENTITY TYPES

Although the Table service is flexible enough to store entities of different types in the
same table, as shown in table 11.4, you should be very careful if you’re considering
such an approach. If every entity you retrieve has a different schema, you’ll need to
write some custom code that will serialize the data to the correct object type.

 Following this approach will lead to more complex code, which will be difficult to
maintain. This code is likely to be more error prone and difficult to debug. We
encourage you to only store entities of different types in a single table when absolutely
necessary.

CHALLENGES OF EXTENDING ENTITIES

On a similar note, if you need to modify the definition of existing entities, you should
take care to ensure that your existing entities don’t break your application after the
upgrade.

 There are a few rules you should keep in mind to prevent you from running into
too much trouble:

� Treat entity definitions as data contracts; breaking the contract will have a seri-
ous effect on your application, so don’t do it lightly.

� Code any new properties as additional rather than required. This strategy
means that existing data will be able to serialize to the new data structure. If
your code requires existing entities to contain data for the new properties, you
should migrate your existing data to the new structure.

� Continue to support existing property names for existing data. If you need to
change a property name, you should either support both the old and new
names in your new entity or support two versions of your entity (old definition

Table 11.4 Storing completely different entities in the same table

Timestamp PartitionKey RowKey PropertyBag

2009-07-01T16:20:32 Shirts 1 Name: Red Shirt

Description: Red

2009-07-01T16:20:33 Shirts 2 Name: Blue Shirt

Description: A Blue Shirt

2009-07-01T16:20:33 Shirts FredJones Firstname: Fred

Surname: Jones

2009-07-05T10:30:21 Shirts 4 Name: Frilly Pink Shirt

Description: A Frilly Pink Shirt

ThumbnailUri: frillypinkshirt.png

249Partitioning data across lots of servers
and new definition). If you only want to support one entity definition, you’ll
need to migrate any existing data to the new structure.

Now that you’ve seen how entities are stored within the Table service, let’s look at what
makes this scalable.

11.4 Partitioning data across lots of servers
In the last couple of sections, we’ve skipped past a few topics, namely, accounts, parti-
tion keys, and row keys. We’ll now return to these topics and explain how the Windows
Azure Table service is such a scalable storage mechanism.

 In this section, we’ll look at how the Table service scales using partitioning at the
storage account and table levels. To achieve a highly scalable service, the Table service
will split your data into more manageable partitions that can then be apportioned out
to multiple servers. As developers, we can control how this data is partitioned to maxi-
mize the performance of our applications.

 Let’s look at how this is done at the storage account layer.

11.4.1 Partitioning the storage account

In this section, we’ll look at how data is partitioned, but we’ll leave performance opti-
mization to a later section.

 In figure 11.1, there were two
tables within a storage account
(ShoppingCart and Products). As
the Table service isn’t a relational
database, there’s no way to join these
two tables on the server side.
Because there’s no physical depen-
dency between any two tables in the
Table service, Windows Azure can
scale the data storage beyond a sin-
gle server and store tables on sepa-
rate physical servers.

 Figure 11.3 shows how these
tables could be split across the Win-
dows Azure data center. In this fig-
ure, you’ll notice that the Products table lives on servers 1, 2, and 4, whereas the
ShoppingCart table resides on servers 1, 3, and 4. In the Windows Azure data center,
you have no control over where your tables will be stored. The tables could reside on
the same server (as in the case of servers 1 and 4) but they could easily live on com-
pletely separate servers (servers 2 and 3). In most situations, you can assume that your
tables will physically reside on different servers.

Server 2Server 1

Products ShoppingCart
Red Shirt
Blue Shirt

..

Blue Frilly Shirt

Products
Red Shirt
Blue Shirt

..

Blue Frilly Shirt

Item 1
Item 2
..

Item X

Server 4 Server 3

Products ShoppingCart
Red Shirt
Blue Shirt

..

Blue Frilly Shirt

Item 1
Item 2
..

Item X

ShoppingCart
Item 1
Item 2
..

Item X

Figure 11.3 Tables within a storage account split
across multiple servers

250 CHAPTER 11 The Table service, a whole different entity
Now that you’ve seen how different tables within a single account will be spread across
multiple servers to achieve scalability, it’s worth looking at how you can partition data
a little more granularly, and split data within a single table across multiple servers.

11.4.2 Partitioning tables

One of the major issues with traditional SQL Server–based databases is that individual
tables can grow too large, slowing down all operations against the table. Although the
Windows Azure Table service is highly efficient, storing too much data in a single table
can still degrade data access performance.

 The Table service allows you to specify how your table could be split into smaller
partitions by requiring each entity to contain a partition key. The Table service can
then scale out by storing different partitions of data on separate physical servers. Any
entities with the same partition key must reside together on the same physical server.

 In tables 11.2 through to 11.4, all the data was stored in the same partition
(Shirts), meaning that all three shirts would always reside together on the same
server, as shown in figure 11.3. Table 11.5 shows how you could split your data into
multiple partitions.

Data replication

In order to protect you from data loss, Windows Azure guarantees to replicate your
data to at least three different servers as part of the transaction. This data replication
guarantee means that if there’s a hardware failure after the data has been committed,
another server will have a copy of your data.

Once a transaction is committed (and your data has therefore been replicated at least
three times), the Table service is guaranteed to serve the new data and will never
serve older versions. This means that if you insert a new Hawaiian shirt entity on server
1, you can only be load balanced onto one of the servers that has the latest version
of your data. If server 2 was not part of the replication process and contains stale
data, you won’t be load balanced onto that server. You can safely perform a read of
your data straight after a write, knowing that you’ll receive the latest copy of the data.

The Amazon SimpleDB database (which has roughly the same architecture as the Win-
dows Azure Table service) doesn’t have this replication guarantee by default. Due to
replication latency, it isn’t uncommon in SimpleDB for newly written data not to exist
or to be stale when a read is performed straight after a write. This situation can never
occur with the Windows Azure Table service.

Table 11.5 Splitting partitions by partition key

Timestamp PartitionKey RowKey PropertyBag

2009-07-01T16:20:32 Red 1 Name: Red Shirt

Description: Red

251Partitioning data across lots of servers
In table 11.5 the Red Shirt and the Frilly Pink Shirt now reside in the Red partition,
and the Blue Shirt and the Frilly Blue shirt are now stored in the Blue partition. Fig-
ure 11.4 shows the shirt data from table 11.5 split across multiple servers. In this figure,
the Red partition data (Red Shirt and Pink Frilly Shirt)
lives on server A and the Blue partition data (Blue Shirt
and Frilly Blue Shirt) is stored on server B. Although
the partitions have been separated out to different phys-
ical servers, all entities within the same partition always
reside together on the same physical server.

ROW KEYS

The final property to explain is the row key. The row key uniquely identifies an entity
within a partition, meaning that no two entities in the same partition can have the
same row key, but any two entities that are stored in different partitions can have the
same key. If you look at the data stored in table 11.5, you can see that the row key is
unique within each partition but not unique outside of the partition. For example,
Red Shirt and Blue Shirt both have the same row key but live in different partitions
(Red and Blue).

 The partition key and the row key combine to uniquely identify an entity—together
they form a composite primary key for the table.

INDEXES

Now that you have a basic understanding of how data is logically stored within the
data service, it’s worth talking briefly about the indexing of the data.

 There are a few rules of thumb regarding data-access speeds:

� Retrieving an entity with a unique partition key is the fastest access method.
� Retrieving an entity using the partition key and row key is very fast (the Table

service needs to use only the index to find your data).
� Retrieving an entity using the partition key and no row key is slower (the Table

service needs to read all properties for each entity in the partition).

2009-07-01T16:20:33 Blue 1 Name: Blue Shirt

Description: A Blue Shirt

2009-07-01T16:20:33 Blue 2 Name: Frilly Blue Shirt

Description: A Frilly Blue Shirt

2009-07-05T10:30:21 Red 2 Name: Frilly Pink Shirt

Description: A Frilly Pink Shirt

ThumbnailUri: frillypinkshirt.png

Table 11.5 Splitting partitions by partition key

Timestamp PartitionKey RowKey PropertyBag

Red Shirt
Pink Frilly Shirt

Blue Shirt
Frilly Blue Shirt

Server A Server B

Figure 11.4 Splitting partitions
across multiple servers

(continued)

252 CHAPTER 11 The Table service, a whole different entity
� Retrieving an entity using no partition key and no row key is very slow, relatively
speaking (the Table service needs to read all properties for all entities across all
partitions, which can span separate physical servers).

We’ll explore these points in more detail as we go on.

Now that we’ve covered the theory of table storage, it’s time to put it into practice.
Let’s open Visual Studio and start storing some data.

11.5 Developing with the Table service
Now that you have an understanding of how data is stored in the Table service, it’s
time to develop a web application that can use it. In the previous section, we defined
an entity for storing the Hawaiian shirt product, and we looked at how it would be
stored in the Table service. Here you’ll build a new application that will manage the
product inventory for the Hawaiian Shirt Shop website.

11.5.1 Creating a project

Rather than returning to the solution you built in chapter 2, here you’ll develop a new
product-management web page in a new web application project. Create a new Cloud
Service web role project called ShirtManagement. If you need a refresher on how to
set up your development environment or how to create a web role project, refer back
to chapter 2.

 Like the other storage services, communication with the Table service occurs
through the REST API (which we’ll discuss in detail in the next chapter). Although you
can use this API directly, you’re likely to be more productive using the StorageClient
library provided in the Windows Azure SDK.

 Whenever you create a new Cloud Service project, this library will be automatically
referenced. But if you’re building a brand new class library or migrating an existing
project, you can reference the following storage client assembly manually:

� Microsoft.WindowsAzure.StorageClient

In addition, you’ll need to reference the ADO.NET Data Services assemblies:

� System.Data.Services
� System.Data.Services.Client

Load balancing of requests

Because data is partitioned and replicated across multiple servers, all requests via
the REST API can be load balanced. This combination of data replication, data parti-
tioning, and a large web server farm provides you with a highly scalable storage solution
that can evenly distribute data and requests across the data center. This level of horse-
power and data distribution means that you shouldn’t need to worry about overloading
server resources.

253Developing with the Table service
Now that you’ve set up your project, let’s look at how you can add the Product entity
class to the project.

11.5.2 Defining an entity

Before you create your product-management web page, you need to create an entity
in the web project. At this stage, we’ll just show you how to add the entity directly to
the web page, but in the next chapter you’ll see how to architecturally separate a class
into an entity layer.

 To keep this example simple, we’ll just store the shirt name and description, as
before. Add a new class to your web project named Product.cs and define the class as
shown in the following listing.

public class Product : TableServiceEntity
{
 public string Name { get; set; }
 public string Description { get; set; }
}

In listing 11.1, the Product class inherits from the TableServiceEntity base class
(Microsoft.WindowsAzure.TableService.TableServiceEntity). This base class
contains the three properties required by all table storage entities:

� Timestamp

� PartitionKey

� RowKey

Now that you’ve set up your project and defined your entity, you need to create a table
to store the entity in. The same method can be used in both the development and live
environments.

11.5.3 Creating a table

The simplest method of creating a table is to create a PowerShell script or to use one
of the many storage clients that are available. In this chapter we’ll use Azure Storage
Explorer, which you can download from CodePlex: http://azurestorageexplorer.
codeplex.com/.

ADO.NET Data Services

The Table service exposes its HTTP REST APIs through its implementation of the ADO.NET
Data Services framework. By using this framework, we can utilize the ADO.NET Data
Services client assemblies to communicate with the service rather than having to de-
velop or use a custom REST wrapper.

Because ADO.NET Data Services is used by the storage client SDK, you’ll need to ref-
erence those assemblies too.

Listing 11.1 Product entity

http://azurestorageexplorer.codeplex.com/

254 CHAPTER 11 The Table service, a whole different entity
In this section, we’ll look at how to create a table in two ways: using Azure Storage
Explorer and using code.

CREATING A TABLE USING THE AZURE STORAGE EXPLORER

Once you have downloaded and fired up Azure Storage Explorer, it will automatically
connect you to your development storage account as long as your local development
storage service is running.

 To create a new table in your storage account, all you need to is select Table > New
Table and enter the name of your table (Products, in this case). Figure 11.5 shows the
newly created Products table in Azure Storage Explorer.

 Although using a tool such as Azure Storage Explorer is probably the easiest
method of creating a new table, you may wish to do this manually in C#.

CREATING A TABLE IN CODE

In this example, you’ll manually create a console application that will create a new
table in the storage account when it’s run. Although we’ll have you use a console
application in this example, you could easily use a web application, Windows Forms
application, or Windows Presentation Foundation application. The deployment appli-
cation doesn’t need to be a cloud application (web or worker role); it can be a stan-
dard application that you run locally.

 To create the application, perform the following steps:

1 Create a console application targeting .NET 3.5.
2 Add a reference to System.Data.Services.
3 Add a reference to System.Data.Services.Client.

Figure 11.5 The Azure Storage Explorer showing the newly created Products table

255Developing with the Table service
4 Add a reference to Microsoft.WindowsAzure.StorageClient.
5 Add an app.config or web.config entry with your storage account credentials.
6 Add the following code to create the table:

CloudStorageAccount.SetConfigurationSettingPublisher((configName,
➥ configSetter) =>
 {
configSetter(RoleEnvironment.GetConfigurationSettingValue(configName));
 });

var storageAccount =

CloudStorageAccount.FromConfigurationSetting("DataConnectionString");

CloudTableClient tableClient =
 storageAccount.CreateCloudTableClient();

tableClient.CreateTableIfNotExist("Products");

The code added in step 6 retrieves storage account information from the app.config
and then calls the CreateTableIfNotExist method from the CloudTableClient
object, passing in the name of the table to create (Products).

Now that you know how to create a table both in the live system and in development
storage, it’s worth taking a quick peek at how this is implemented in the development
storage backing store. Figure 11.6 shows how tables are represented in the develop-
ment storage SQL Server database.

 As you can see in figure 11.6, the SQL Server database that stores the entities is
pretty flexible. The TableContainer table keeps a list of all the tables stored in the
development storage account. Because you can create tables dynamically, any new
table created will contain a new entry in this table.

 Each row in the TableRow table in figure 11.6 stores a serialized version of the
entity. As you can see from this table definition, the only fixed data that’s stored in this
table is AccountName, TableName, PartitionKey, RowKey, and TimeStamp. All other
properties are stored in the Data column. As you can see, the actual development stor-
age schema relates to the logical representation that you saw in table 11.4.

 Now that you’ve seen how tables are represented in development storage, let’s look
at how you can start working with your entities.

Deploying to live

The code used to create a new table will work not only on your development storage
account, but will also work against the live system. All you need to do to make this
code work against the live system is to change the DataConnectionString configu-
ration setting to your live account.

256 CHAPTER 11 The Table service, a whole different entity
11.6 Doing CRUDy stuff with the Table service
In this section, you’ll build a new product-management web page to manage the
Hawaiian shirt product list stored in the Table service. Through this web page, you’ll
be able to create, read, update, and delete (also known as CRUD) data in the table. Figure
11.7 shows what the web page will look like.

Figure 11.6 How tables are represented in the development storage SQL Server database

Figure 11.7 Product-management web page

257Doing CRUDy stuff with the Table service
The product-management web page shown in figure 11.7 will allow us to do several
things:

� Add new shirts
� List all shirts
� Edit existing shirts
� Delete shirts

You’ve already set up the entity and registered the entity table in the development
storage. It’s time to develop the product-management web page shown in figure 11.7.
The first step is to set up a context class for your entity.

11.6.1 Creating a context class

In order to work with entities in any way (query, add, insert, delete) using ADO.NET
Data Services, you first need to set up a context object.

 The context class is really a bridge between an entity and ADO.NET Data Services. It
will define the endpoint of the storage account, the name of the table that we’ll query,
and the entity that will be returned. The following listing shows the context class for
the Products table.

public class ProductsContext : TableServiceContext
{
 private static CloudStorageAccount storageAccount =
 CloudStorageAccount.FromConfigurationSetting("DataConnectionString");

 public ProductsContext()
 : base(storageAccount. TableEndpoint.AbsoluteUri (),
 storageAccount.Credentials)
 {

 }

 public DataServiceQuery<Product> Product
 {
 get
 {
 return CreateQuery<Product>("Products");
 }
 }
}

Listing 11.2 shows the context object for the Hawaiian shirt Product entity. As you can
see, most of the complexity of the context class is abstracted away in the classes that you
inherit from. The TableServiceContext class inherits from the standard ADO.NET
Data Services context class, DataServicesContext. The TableServiceContext class
provides some additional functionality beyond what is provided out of the box with
ADO.NET Data Services, including retry policies.

Listing 11.2 Product context class

Reads account
details from config

Uses account details
to populate context

Passes LINQ queries
through to table

258 CHAPTER 11 The Table service, a whole different entity
 In listing 11.2, the storage account details and credentials are automatically popu-
lated from the service configuration. This allows you to simplify your calling
classes—you don’t need to get the endpoint and credentials every time you wish to use
the context class.

 Finally, the Product property is what you’ll use to perform LINQ queries on the
Products table.

TIP Code generation is outside the scope of this book, but if you’re generat-
ing a large number of tables and entities, you may wish to consider using a
code generation tool such as T4 to autogenerate code where possible. Typical
areas to consider generating code automatically would include table context
classes and table-creation scripts.

Let’s look at how you can start using this.

11.6.2 Adding entities

Now that you have your context class, you can start creating your product-manage-
ment web page. To do this, you need to add a new ASP.NET web page called prod-
ucts.aspx.

 At this stage, we won’t generate the grid listing all the Hawaiian shirts for sale; we’ll
only write the code required to add shirts to the Products table. Therefore, you only
need to add the markup for the bottom section of the products page.

 The listing that follows contains the ASPX code that you should add to the prod-
ucts.aspx page.

<fieldset>
 <div>
 <div>id:
<asp:TextBox id="txtId" runat="server" />
</div>
 <div>name:
<asp:TextBox id="txtName" runat="server" />
</div>
 <div>
 description:
 <asp:TextBox id="txtDescription"
runat="server" />
 </div>
 <asp:button id="btnAdd" text="Add"
 runat="server"
onclick="btnAdd_Click" />
 </div>
</fieldset>

When the Add button is clicked in listing 11.3, the shirt entity will be added to the
Products table.

Listing 11.3 Adding the shirt section of the products.aspx page

Id text box

Add button

259Doing CRUDy stuff with the Table service
 Listing 11.4 contains the code for the Add button’s click event. This code should
be added to the products.aspx code-behind.

protected void btnAdd_Click(object sender, EventArgs e)
{
 var shirtContext = new ProductsContext();

 var newShirt = new Product
 {
 PartitionKey = "Shirts",
 RowKey = txtId.Text,
 Name = txtName.Text,
 Description = txtDescription.Text
 };

 shirtContext.AddObject("Products", newShirt);

 shirtContext.SaveChanges();

 }

To add the new shirt details, which were entered on the web page, to the Products
table, you need to extract all the information entered about the product (ID, name,
and description) and create a new instance of the Product class called newShirt w.
Once you’ve created an instance of the shirt e, you add the shirt entity to a tracking
list held in the context object q for the product list.

 When you add the entity to the tracking list e, you also specify the table that the
entity should be added to. The product context object (shirtContext) maintains a
list of all objects that you have changed as part of this operation. You can create,
update, or delete objects from the product list, and you can add all these changes
locally to the tracking list.

 Eventually, when you wish to perform all the changes on the server side, you can
invoke the SaveChanges method on the context object r, which will apply all the
tracked changes on the server side using ADO.NET Data Services via the REST API.

 In the next chapter, we’ll look at some of the more advanced scenarios for apply-
ing changes, such as batching changes, concurrency, retry logic, and transactions.

WAS THE ENTITY ADDED?

You should now be able to run the product-management web page and add new shirts
to the product list. We haven’t yet implemented the grid to display the list of entities
in the product list—we’ll do that in the next section. In the meantime you can always
check that your entity exists by querying the development storage database using the
following statement in SQL Management Studio:

SELECT * FROM TableRow

Listing 11.4 Add the entity to the Products table

Creates context to
connect with table

q

w
Creates object
to store in table

Adds new object
to context

e

r
Commits changes
in context to table

260 CHAPTER 11 The Table service, a whole different entity
11.6.3 Listing entities

It’s now time to extend the products.aspx web page to display the list of shirts stored
in the Products table. The following listing contains the code required for your grid.
This code should be placed above the code in listing 11.3.

<asp:GridView ID="GridView1"
 OnRowCommand="GridView1_RowCommand"
 OnRowDeleting="GridView1_RowDeleting"
 OnRowEditing="GridView1_RowEditing"
 OnRowCancelingEdit="GridView1_RowCancelingEdit"
 OnRowUpdating="GridView1_RowUpdating"
 AutoGenerateColumns="false"
 AutoGenerateEditButton="true"
 runat="server">
 <Columns>
 <asp:TemplateField>
 <ItemTemplate>
 <asp:LinkButton ID="btnDelete" runat="server"
 Text="Delete"
 CommandName="Delete"
 CommandArgument=
 '<%#Eval("RowKey")%>'/>
 </ItemTemplate>
 </asp:TemplateField>
 <asp:BoundField HeaderText="Id"
 DataField="RowKey"
 ReadOnly="true"/>
 <asp:BoundField HeaderText="Name"
 DataField="Name" />
 <asp:BoundField HeaderText="Description"
 DataField="Description" />
 </Columns>
</asp:GridView>

The grid in listing 11.5 will display the product ID, name, and description for each
shirt in the Products table. The name and description columns will both be editable,
but the product ID won’t be.

 At this stage, you’ve defined the markup required to edit and delete the shirts in
the table, but we won’t write the code-behind for these events just yet. The following
listing contains the code-behind for the products.aspx page, which you’ll require to
populate the new grid with the list of shirts.

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 BindGrid();

Listing 11.5 ASP.NET grid for displaying shirts

Listing 11.6 Populating the list of shirts

Passes in product
ID (row key)

Displays product ID (row
key) as read-only field

Displays product name

Displays product
description

261Doing CRUDy stuff with the Table service
 }
}

private void BindGrid()
{
 var shirtContext = new ProductContext();
 GridView1.DataSource = shirtContext.Product;
 GridView1.DataBind();
}

As you can see, the code to bind the GridView to the list of shirts held in the Products
table is pretty simple. On the first load of the web page q, the BindGrid method w is
called to populate the grid with the list of shirts retrieved from the Products table.

 To retrieve the list of shirts, you instantiate the product context object (shirt-
Context) w and set the data source of the grid to the Product property of the con-
text object.

 If you look back to the code used to define the product context in listing 11.2,
you’ll see that the Product property returns an IQueryable list of products. By return-
ing an IQueryable list of products from the context object, you can define a query
using LINQ that will be executed on the server side when you enumerate the list of
objects, which happens when the grid is data bound e.

 To keep this example simple, we won’t perform any server-side filtering at this
stage. We’ll simply return a list of all shirts in the Products table as shown at w. In the
next chapter, we’ll look at how to build efficient server-side queries using LINQ.

11.6.4 Deleting entities

In listing 11.5 we included some event definitions in the markup to handle deletes.
It’s now time to implement those event handlers so that when you click the Delete but-
ton in the grid, it will delete the corresponding shirt from the Products table in the
Table service.

 In the listing that follows you’ll see the code-behind that relates to the Delete
button.

protected void GridView1_RowCommand (object sender,
 GridViewCommandEventArgs e)
{
 if (e.CommandName == "Delete")
 {
 DeleteShirt(e.CommandArgument.ToString());
 BindGrid();
 }
}

private void DeleteShirt(string rowKey)
{
 var shirtContext = new ProductContext();

Listing 11.7 Code-behind to delete shirts

Creates context to
connect to table

q

w
Sets grid’s data source
to Products table

e
Binds
grid

Called when Delete
button is clicked

Passes product
ID (row key)

Creates context to
connect with table

q

262 CHAPTER 11 The Table service, a whole different entity
 var entity = (from item in shirtContext.Product
 where item.PartitionKey=="Shirts" &&
 item.RowKey==rowKey
 select item).First();

 shirtContext.DeleteObject(entity);

 shirtContext.SaveChanges();

 BindGrid();
}

protected void GridView1_RowDeleting(object sender,
➥ GridViewDeleteEventArgs e){}

The code in listing 11.7 shows how you can delete a shirt from the Products table
when the Delete button is clicked in the grid. The DeleteShirt method is very similar
to the code in listing 11.4 that you used to add a shirt. You instantiate the shirt context
q, add the shirt to be deleted to the context object’s tracking list e, and submit the
changes to the Table service. Finally, you rebind the grid to display the updated list.

FINDING THE ENTITY TO DELETE

There are a couple of differences between adding and deleting a shirt. When adding a
shirt to the product list, you can simply create a new Product object and add that to
the tracking list. If you’re deleting an object, you first need to get a local copy of the
object that you wish to delete (as you did at w in listing 11.7) and then add that
object to the tracking list (as shown at e).

 For the sake of simplicity, you can pass the object to be deleted by refetching the
object from the Table service. In production code, you should never refetch an object
for deletion because this performs an unnecessary call to the Table service—in the
next chapter, we’ll look at how to delete an object in a production web scenario. In
this example, however, you can take the ProductId (row key) that was passed as the
Delete button’s command argument, and then perform a LINQ query to retrieve that
entity from the Table service.

 The following code shows the LINQ query we used to retrieve the individual shirt:

from item in shirtContext.Product
where item.PartitionKey=="Shirts" && item.RowKey==rowKey
select item

Looking at the LINQ query, you can see that we’re using the IQueryable Product
from the shirtContext object as the data source. Because this query is IQueryable,
you can modify the query before it’s sent to the server to restrict the result set to only
return those entities that reside in the Shirts partition whose row key matches the
passed-in ProductId. Because this query is manipulated before it’s sent to the server,
all the filtering is performed by the Table service rather than by the client application.

 You’ll now be able to add, list, and delete shirts in the Products table.

Uses query to fetch
record from table

w

e
Deletes object
locally

263Doing CRUDy stuff with the Table service
11.6.5 Updating entities

Finally, you need to update the code-behind to allow editing the grid and saving any
changes back to the Products table. The following listing contains the code you need
to edit the grid.

protected void GridView1_RowCommand(object sender,
 GridViewCommandEventArgs e)
{
 if (e.CommandName == "Delete")
 {
 DeleteShirt(e.CommandArgument.ToString());
 BindGrid();
 }
 if (e.CommandName == "Edit")
 {
 BindGrid();
 }
}

protected void GridView1_RowEditing
 (object sender,GridViewEditEventArgs e)
{
 GridView1.EditIndex = e.NewEditIndex;
 GridView1.DataBind();
}

protected void GridView1_RowCancelingEdit(object sender,
 GridViewCancelEditEventArgs e)
{
 GridView1.EditIndex = -1;
 GridView1.DataBind();
}

protected void GridView1_RowUpdating(object sender,
 GridViewUpdateEventArgs e)
{
 GridViewRow row = GridView1.Rows[e.RowIndex];
 string id = row.Cells[2].Text;

 var shirtContext = new ProductContext();

 var entity = (from item in shirtContext.Product
 where item.PartitionKey ==
 "Shirts" && item.RowKey == id
 select item).First();

 entity.Name = ((TextBox)
 (row.Cells[3].Controls[0])).Text;
 entity.Description = ((TextBox)
 (row.Cells[4].Controls[0])).Text;

Listing 11.8 Updating entities

Create a context
to the tableq

Retrieve the old entity
from the tablew

Update the data
in the entity
from the tablee

264 CHAPTER 11 The Table service, a whole different entity
 shirtContext.UpdateObject(entity);
 shirtContext.SaveChanges();

 GridView1.EditIndex = -1;
 BindGrid();
}

After editing the grid with your new values, you need to store the modified data back
to the Products table. Listing 11.8 will be called whenever there’s a change to any data
in the grid. The GridView’s RowUpdating event is where you’ll perform that update.
The process of updating data is very similar to deleting an entity, as shown earlier.

 You retrieve the row that has been edited and extract the product ID displayed in
the second cell of the row. As before, you instantiate the product context q, and at w
you retrieve a copy of the edited entity from the Table service using a LINQ query,
passing the partition key and the row key. At e you replace the current name and
description of the shirt with the modified data extracted from the text boxes of the
row being edited. You then add the modified entity to the shirtContext’s tracking list
via the UpdateObject method, commit the changes back to the Table service using the
SaveChanges method, take the grid out of edit mode, and rebind the grid to a fresh
copy of the data returned from the Table service.

11.7 Summary
In this chapter, we gave you an overview of the Table service, explaining how it pro-
vides massively scalable storage and how it differs from traditional relational data-
bases, such as SQL Server.

 As you’ve seen, the Table service is a scalable way of storing and querying entities,
and it isn’t a relational database. We can sometimes assume we need relational data-
bases when there are other ways of representing data in our solution. Designing sys-
tems is all about trade-offs, and the trade-off with relational databases is scalability. By
using the Table service, you gain scalability, but the cost is that you have to think and
design systems in a different way.

 You now have enough knowledge to create and deploy web applications that run in
the cloud and can store data in the Table service. In the next chapter, we’ll expand
upon your new knowledge and drill into some of the inner workings of the service by
looking at the REST API and seeing how you can efficiently query and update data.

Working with the
Table service REST API
In the previous chapter, we looked at how to get started with the Table service using
the StorageClient library and the WCF Data Services client. In this chapter, we’ll
look at the underlying REST API to gain a better understanding of the communica-
tion between applications and the Table service.

WCF Data Services is an implementation of the OData protocol. OData defines
how to work with and exchange data over REST-based services. The Table service
implements OData, and the StorageClient library acts as a WCF Data Services client.
Even with these layers of abstraction, understanding how to query and update data
using the REST API will help you to truly understand what is happening under the
covers when using the WCF Data Services–based Table service API.

 Let’s get started by looking at how you can perform operations directly against
the REST API.

This chapter covers
� Introducing the StorageClient library and REST API

� Understanding how to effectively modify data

� Querying the Table service
265

266 CHAPTER 12 Working with the Table service REST API
12.1 Performing storage account operations using REST
For now, we’ll concentrate purely on the operations that you can perform against a
storage account using the REST API. Although we’ve already looked at these opera-
tions using the StorageClient library, it’s still useful to look at the REST API. Ultimately,
the StorageClient library is just a wrapper library for the calls we’re about to look at.
Over the next few sections, we’ll look at the following operations:

� Listing tables
� Deleting tables
� Creating tables

In chapters 8–10 on BLOBs, we described how you could interact with the storage ser-
vices using various endpoints. We won’t go over that subject again in this chapter, but
it’s worth looking at the endpoint URI of the Table service. The URI of the Table ser-
vice endpoint uses the following structure:

http://<storageaccount>.table.core.windows.net/

If your storage account was named silverlightukstorage, your URI would be the following:

http://silverlightukstorage.table.core.windows.net/

For the development storage Table service, you’d use the following URI:

http://127.0.0.1:10002/devstoreaccount1/

Now that you know what the URIs will look like, let’s try using them.

12.1.1 Listing tables in the development storage account using the REST API

In chapter 9, we looked at a small console application that listed all the containers in a
BLOB storage account using the REST API. In this section, you’ll create a similar console

Figure 12.1 A console application that returns a list of tables in a storage account—that’s a
lot of XML just to return a list containing the name of one table.

267Performing storage account operations using REST
application that will list all the tables in a development storage account. Figure 12.1
shows the output of this console application.

 If you look at the output in figure 12.1 you can see that the Products table (created
in the previous chapter) is returned in the list of storage accounts.

If you wanted to list all the tables in a storage account using the StorageClient library,
you could do the following:

var storageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings["DataConnectionString"]);

CloudTableClient tableClient =
 storageAccount.CreateCloudTableClient();

tableClient.ListTables();

Let’s now take a look at how this could be done using the REST API directly. You might
not usually do this directly with REST, but we want you to appreciate what’s really hap-
pening behind the scenes.

 In order to get a list of all tables that exist in the storage account, all you need to
do is write some code that will perform a GET request against the following URIs:

http://127.0.0.1:10002/devstoreaccount1/Tables (for dev storage)
http://<storageaccount>.table.core.windows.net/Tables (for live)

To create the application that generated the output shown in figure 12.1, you’ll need
to create a new console application in Visual Studio. To keep the example simple, we’ll
reuse the StorageClient library’s credential-signing method. You’ll need to add a refer-
ence to this assembly—this is the same assembly that you used in the previous chapter.

 The following listing contains the code for the console application.

static void Main(string[] args)
{

Does that funny-looking XML follow some sort of standard?

As you may have already gathered, normal people don’t create APIs that output XML
like what you see in figure 12.1. You need a standard to generate that level of ver-
boseness and complexity.

The standard that the Table service uses to expose its data is known as AtomPub.
We’ll discuss it in more detail later.

If you’re interested in being able to identify AtomPub documents in the wild, you can
always look at the XML namespace. As you can see in figure 12.1, it’s referencing
the Atom namespace:

xmlns=http://www.w3.org/2005/Atom

Listing 12.1 Listing the tables in a storage account

268 CHAPTER 12 Working with the Table service REST API
HttpWebRequest hwr =
 CreateHttpRequest(new
 ➥ Uri(@"http://127.0.0.1:10002/
 ➥ devstoreaccount1/Tables"),
 ➥ "GET", new TimeSpan(0, 0, 30));

var storageAccount =
 CloudStorageAccount.Parse(ConfigurationManager
 ➥ .AppSettings["DataConnectionString"]);

storageAccount.Credentials.SignRequestLite(hwr);

 using (StreamReader sr =
 ➥ new StreamReader(hwr.GetResponse()
 ➥ .GetResponseStream()))
 {
 XDocument myDocument = XDocument.Parse(sr.ReadToEnd());
 Console.Write(myDocument.ToString());
 }
}

private static HttpWebRequest CreateHttpRequest
➥ (Uri uri, string httpMethod, TimeSpan timeout)
{
 HttpWebRequest request = (HttpWebRequest)HttpWebRequest.Create(uri);
 request.Timeout = (int)timeout.TotalMilliseconds;
 request.ReadWriteTimeout = (int)timeout.TotalMilliseconds;
 request.Method = httpMethod;
 request.ContentLength = 0;
 request.ContentType = "application/atom+xml";
 return request;
}

The code displayed in listing 12.1 will make a GET request to the development Table
service asking for a list of all the tables in the storage account (http://
127.0.0.1:10002/devstoreaccount1/Tables).

 At q, you generate the HTTP request by calling the CreateHttpRequest method.
This method creates the HttpRequest for the given URI (http://127.0.0.1:10002/
devstoreaccount1/Tables) and HTTP verb (GET) and returns the request to the calling
method.

Sign Request Lite

You’ve probably noticed that listing 12.1 makes use of the storage account credentials
from the StorageClient library w, even though it’s using the REST API. The major reason
for this is that signing the HTTP request manually is hard and horrible. Rather than
writing that nasty code, it’s easier to use the StorageClient library method. We’ll dis-
cuss request signing in a little more detail in section 12.2.

Creates
request

q

Uses storage
credentials to
sign request

w

Processes
responsee

269Performing storage account operations using REST
Finally, with the request generated and signed, you can make the request to the devel-
opment service e. The Table service will return an XML response listing all of the
tables in your account, which is written to the console window, as you saw in figure 12.1.

SWITCHING TO THE LIVE SERVICE

In listing 12.1 you made a request to the development storage Table service. If you
wanted to change the application to query a live service (such as a silverlightukstorage
storage account) you’d need to change the URI at q to http://silverlightukstorage.
table.core.windows.net/Tables.

 It’s worth pointing out that although the URI in listing 12.1 is hardcoded, you
could extract it from the storageAccount object:

storageAccount.TableEndpoint.AbsoluteUri.ToString();

This is just the base URI; you’ll still need to append /tables to access the Table service.
 Now that you know how to list tables, let’s take a look at how you can change this

code to delete a table (and its underlying data).

12.1.2 Deleting tables using the REST API

To delete a table using the StorageClient library, you need to call the DeleteTable
method of your CloudTableClient object, passing in the name of the table that you
wish to delete. The following code would delete the Products table:

var storageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings["DataConnectionString"]);

CloudTableClient tableClient =
 storageAccount.CreateCloudTableClient();

tableClient.DeleteTable("Products");

If you wanted to delete the same table using the REST API directly, you could perform
an HTTP DELETE (rather than a GET) request using the following URI:

http://silverlightukstorage.table.core.windows.net/Tables('Products')

To modify listing 12.1 to delete the Products table, you could replace the code at q
with the following:

HttpWebRequest hwr =
 CreateHttpRequest(
 ➥ new Uri(@"http://silverlightukstorage
 ➥ .table.core.windows.net/Tables('Products')"),
 ➥ "DELETE", new TimeSpan(0, 0, 30));

As you can see, this code replaces the original GET request with a DELETE, and the URI
has been modified. Because you no longer need to process an XML response, you’d
also need to change the code at e as follows:

hwr.GetResponse();

http://silverlightukstorage.table.core.windows.net/Tables

270 CHAPTER 12 Working with the Table service REST API
Finally, because the code now uses the live Table service rather than the development
storage version, you’d also need to set the correct credentials.

 You’ve now had a chance to interact with the Table service both via the StorageCli-
ent library and by using the REST API directly, so let’s look at some of the technologies
used to implement the Table service REST API.

12.1.3 WCF Data Services and AtomPub

WCF Data Services (formerly known as Astoria) is a data-access framework that allows
you to create and consume data via REST-based APIs from your existing data sources
(such as SQL Server databases) using HTTP.

 Rather than creating a whole new protocol for the Table service API, the Windows
Azure team built the REST-based APIs using WCF Data Services. Although not all
aspects of the Data Services framework have been implemented, the Table service sup-
ports a large subset of the framework.

 One of the major advantages of WCF Data Services is that if you’re already familiar
with the framework, getting started with the Windows Azure Table service is pretty
easy. Even if you haven’t used the WCF Data Services previously, any knowledge gained
from developing against Windows Azure storage will help you with future develop-
ment that may use the framework.

WCF DATA SERVICES CLIENT LIBRARIES

WCF Data Services provides a set of standard client libraries that abstract away the com-
plexities of the underlying REST APIs and allow you to interact with services in a stan-
dard fashion regardless of the underlying service. Whether you’re using WCF Data
Services with the Windows Azure Table service or SQL Server, your client-side code will
be pretty much the same. As seen in the previous chapter, using these libraries to com-
municate with the Table service allows you to develop simple standard code against
the Table service quickly.

ATOMPUB

The Windows Azure Table service uses the WCF Data Services implementation of the
Atom Publishing Protocol (AtomPub) to interact with the Table service. AtomPub is an
HTTP-based REST-like protocol that allows you to publish and edit resources. AtomPub
is often used by blog services and content management systems to allow the editing of
resources (articles and blog postings) by third-party clients. Windows Live Writer is a
well-known example of a blog client that uses AtomPub to publish articles to various
blog platforms (Blogspot, WordPress, Windows Live Spaces, and the like). In the case
of Windows Azure storage accounts, tables and entities are all considered as resources.

 Although WCF Data Services can support other serialization formats (such as JSON)
the Table service implementation of WCF Data Services only supports AtomPub. In this
book, we won’t look at the AtomPub protocol specifically, but we’ll point out its usage.

 If you were to look at all the previous examples in this chapter (listing and deleting
tables in a storage account) and compare them to the AtomPub protocol, you would
see that the REST APIs map directly.

271Performing storage account operations using REST
 If you’re interested in reading more about the AtomPub protocol (RFC 5023) you can
read the full specification here: http://bitworking.org/projects/atom/rfc5023.html.

 Now that you have a basic awareness of AtomPub, we can look at how the AtomPub
protocol and the Atom document format are used to create a table using the Table
service REST API.

12.1.4 Creating a table using the REST API

In the previous chapter, you created a table using the following StorageClient library
call:

var storageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager.AppSettings["DataConnectionString"]);

CloudTableClient tableClient =
 storageAccount.CreateCloudTableClient();

tableClient.CreateTableIfNotExist("ShoppingCartTable");

Ultimately the StorageClient library just wraps the REST API that’s exposed by the
Table service. Let’s take a look at how this is done.

CREATING A TABLE USING ATOMPUB

To create a new table, you must perform a POST request against the URI you used ear-
lier to list and delete tables in the silverlightukstorage storage account.

POST http://silverlightukstorage.table.core.windows.net/Tables

Because the Table service implements the AtomPub protocol, the body of the POST
request needs to be in the Atom document format. The following Atom document
instructs the Table service to create a new table called ShoppingCartTable in the stor-
age account:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
 <entry xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
xmlns="http://www.w3.org/2005/Atom">
 <title />
 <updated>2009-03-18T11:48:34.9840639-07:00</updated>
 <author>
 <name/>
 </author>
 <id/>
 <content type="application/xml">
 <m:properties>
 <d:TableName>ShoppingCartTable</d:TableName>
 </m:properties>
 </content>
 </entry>

As you can see from this verbose piece of junk, creating a simple table requires a
whole bunch of useless information that’s never used.

Specifies name
of table to create

272 CHAPTER 12 Working with the Table service REST API
Instead of using AtomPub to create tables with a crazy amount of XML, you can do the
same thing with the slightly easier-to-use REST API. We’ll eventually get to the easiest
way to create a table, which is with the StorageClient library.

CREATING THE TABLE USING THE REST API IN A CONSOLE APPLICATION

It’s time for you to create a small console application that will generate the Shopping-
CartTable in a storage account using AtomPub and the REST API. The listing that fol-
lows contains the code for the console application.

static void Main(string[] args)
{
 HttpWebRequest hwr = CreateHttpRequest(new Uri(
 @"http://silverlightukstorage.table.core.windows.net/Tables"),
 "POST", new TimeSpan(0, 0, 30));

 string xml = string.Format(@"<?xml version=""1.0"" encoding=""utf-8""
 ➥ standalone=""yes""?><entry
 ➥ xmlns:d=""http://schemas.microsoft.com/ado/2007/08/dataservices""
 ➥ xmlns:m=""http://schemas.microsoft.com/ado/2007/08/dataservices/metadata""
 ➥ xmlns=""http://www.w3.org/2005/Atom""><title/><updated>{0:yyyy-MM-
 ➥ ddTHH:mm:ss.fffffffZ}</updated><author><name/></author><id/><content
 ➥ type=""application/xml""><m:properties><d:TableName>{1}</d:TableName>
 ➥ </m:properties></content></entry>"
 ➥ , DateTime.UtcNow, "ShoppingCartTable");

 byte[] bytes = Encoding.UTF8.GetBytes(xml);
 hwr.ContentLength = bytes.Length;

 var storageAccount =
 CloudStorageAccount.Parse(

Our two cents about the REST API method of creation

This is a complete rant, and we do apologize for it, but it has to be said. The REST API
method of creating tables is unnecessarily complex and verbose. We know you prob-
ably won’t care because you’ll use the StorageClient library to create tables rather
than the REST API. We also know that it’s not Microsoft’s fault—they’re just following
the standard. But could we not have a simpler API call?

The method of deleting the ShoppingCartTable is pretty simple; it’s the HTTP verb
DELETE with the appropriate URI, such as this one:

http://silverlightukstorage.table.core.windows.net/Tables
➥ ('ShoppingCartTable')

It’s pretty simple, isn’t it? Why does AtomPub have that mad method of creating a
table? We can’t help thinking that a simpler method of creating tables would be to
use the same URI as DELETE and change the HTTP verb from DELETE to POST.

Listing 12.2 Creating tables using the REST API and AtomPub

273Authenticating requests against the Table service
 ConfigurationManager
 ➥ .AppSettings["DataConnectionString"]);

 storageAccount.Credentials.SignRequestLite(hwr);

 using (Stream requestStream =
 ➥ hwr.GetRequestStream())
 {
 requestStream.Write(bytes, 0, bytes.Length);
 }

 using (StreamReader sr =
 new StreamReader(hwr.GetResponse()
 ➥ .GetResponseStream()))
 {
 XDocument myDocument =
 XDocument.Parse(sr.ReadToEnd());

 Console.Write(myDocument.ToString());
 }
}

The console application in listing 12.2 is pretty much the same as the one in listing 12.1
that listed tables. But there are a few differences between the two applications. In this
case, you use the URI of your table endpoint, and you need to change the HTTP verb
from GET to DELETE. You also need to convert the Atom XML you used earlier from a
string to a byte array. Finally, you write the Atom XML byte[] to the request body.

 Over the past few sections, we’ve looked at how you can interact with the REST
API directly. In each example, you’ve used the StorageClient library to sign the
request, but we haven’t spent any time explaining that. Let’s take a little time out to
do that now.

12.2 Authenticating requests against the Table service
In chapter 9 (section 9.7) we described the Shared Key authentication method for
BLOBs. This method of authentication is used by both the BLOB and Queue services.
The Table service, however, supports two different authentication mechanisms:

� Shared Key authentication for Table service
� Shared Key Lite authentication for Table service

Let’s take a look at Shared Key authentication first.

12.2.1 Shared Key authentication

Shared Key authentication for Table service is the most secure method of authenticat-
ing against the Table service using the REST API. The method for generating an authen-
tication key is similar to the method used for BLOBs (with a few subtle differences).

 In order to generate a shared key, you need to canonicalize the HTTP request and
then hash it using a SHA-56 algorithm, storing the hashed value in the Authorization

Gets
credentials

Signs
request

Writes message
to the wireq

Makes request
to Table service

274 CHAPTER 12 Working with the Table service REST API
header. The following value represents the Authorization header for a request,
hashed using the Shared Key mechanism:

SharedKey devstoreaccount1:J5xkbSz7/7Xf8sCNY3RJIzyUEfnj1SJ3ccIBNpDzsq4=

The major difference between the shared key for the BLOB service (as well as the
Queue service for that matter) and the Table service is that you don’t include canoni-
calized headers in the signature. The following code shows how you would generate
the string prior to SHA-256 hashing:

unhashedString =
 VERB + "\n" + Content-MD5 + "\n"
+ Content-Type + "\n" + Date + "\n"
+ canonicalizedRequest;

Once you’ve generated the string, you can hash it and stuff it into the Authorization
header.

 Although you can use the Shared Key mechanism with the Table service, it can
only be used with the REST API directly—the WCF Data Services client doesn’t support
the Shared Key mechanism. Fortunately, the Table service also supports Shared Key
Lite as an authentication mechanism (which is supported by the WCF Data Services cli-
ent). Let’s take a look at that authentication mechanism.

12.2.2 Shared Key Lite authentication

The Shared Key Lite authentication mechanism for signing a request is similar to the
Shared Key method. Like the Shared Key mechanism, it will canonicalize and hash
the request using a SHA-256 algorithm, storing the result in the Authorization header.
The following value represents the Authorization header for a request hashed using
the Shared Key Lite mechanism:

SharedKeyLite devstoreaccount1:0c4bknVWVmQ+L1r5jCIYFiNDkSXHata8ZYW8mjQhPLo=

Although Shared Key Lite follows the same process of hashing a request and uses the
same key to hash the request as the Shared Key mechanism, Shared Key Lite is a
lighter and less secure mechanism. The Shared Key mechanism includes more data as
part of the hash, meaning a hacker would have a better chance of tampering with the
request when you’re using Shared Key Lite rather than Shared Key.

 If you look back to listing 12.2, you can see that the request is signed prior to writ-
ing the Atom XML to the request body (at q). That means the XML isn’t part of the
hash and can be tampered with.

 If an HTTP request is intercepted within the Shared Access Signature time win-
dow, a hacker would be able to modify the request to create a table of a different type
(such as a NastyHackerTable). The hacker would not be able to perform any other
types of requests, however, because the hash prevents the HTTP verb from being tam-
pered with.

275Modifying entities with the REST API is CRUD
By now, you should have a good feel for storage accounts, the REST API, AtomPub,
and which operations you can perform on a storage account using both the REST API
directly and the StorageClient library. Now let’s look at how to perform CRUDy stuff
(inserts, updates, and deletes—we’ll do querying later) in conjunction with the REST
API and the StorageClient library.

12.3 Modifying entities with the REST API is CRUD
Over the next few sections, we’ll focus on how the REST API can be used to communi-
cate with the Table service in regard to entities. In particular, we’ll look at

� Inserting entities
� Deleting entities
� Updating entities

Before you can delete or update an entity, you’ll need to insert one first.

12.3.1 Inserting entities

Before we look at how to insert an entity using the REST API, let’s look at the code
you’d write to store an entity in a table using the StorageClient library:

var shirtContext = new ProductContext();

shirtContext.AddObject("Products",
 new Product
 {
 PartitionKey = "Shirts",
 RowKey = "RedShirt",
 Name = "Red Shirt",
 Description = "A Red Shirt"
 });

shirtContext.SaveChanges();

The preceding example inserts a new instance of the Product entity into the Products
table. The new Product will be stored in the Shirts partition with a RowKey value of

Which authentication method should you use?

If you’re using WCF Data Services to communicate with the Table service and your ap-
plication runs purely within the data center, you can continue to use the Shared Key
Lite mechanism. (To be honest, you don’t have a choice, as it’s the only authentication
mechanism supported by the WCF Data Services client.)

If you’re using the REST API directly, and you have an application communicating with
the Table service API outside of the Windows Azure data center, or you want the highest
possible security, you should use the REST API directly with Shared Key authentication.

276 CHAPTER 12 Working with the Table service REST API
RedShirt. For a detailed description of how data is stored in the Table service and
how to use a context class to insert data into a table, please refer to chapter 11.

Now that we’ve reminded ourselves of how to insert a new entity into a table using the
StorageClient library, let’s look at how this would be done using the REST API directly.

USING THE REST API

To use the AtomPub-based REST API to insert a new entity into a table, you’d need to
perform an HTTP POST request to the following URI:

http://<storageaccountname>.table.core.windows.net/<TableName>

To insert a new entity into the Products table in the silverlightukstorage storage
account, you’d use the following URI:

http://silverlightukstorage.table.core.windows.net/Products

To insert the entity we created at the beginning of section 12.3.1 with the StorageCli-
ent library, you’d need to define the request body with the following Atom XML:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<entry xmlns:d="http://schemas.microsoft.com/
➥ ado/2007/08/dataservices" xmlns:m="http://schemas.microsoft.com/
➥ ado/2007/08/dataservices/metadata"
➥ xmlns="http://www.w3.org/2005/Atom">
 <title />
 <updated>2009-07-27T14:22:48.8875037Z</updated>
 <author>
 <name />
 </author>
 <id />
 <content type="application/xml">
 <m:properties>
 <d:Description>A Red Shirt</d:Description>
 <d:Name>Red Shirt</d:Name>
 <d:PartitionKey>Shirts</d:PartitionKey>
 <d:RowKey>RedShirt</d:RowKey>
 <d:Timestamp m:type="Edm.DateTime">0001-01-01T00:00:00</d:Timestamp>
 </m:properties>

The Unit of Work pattern

WCF Data Services, and therefore the StorageClient library, implement the Unit of Work
pattern for saving data back to the database. This means that all changes are tracked
locally (when you use the AddObject method) and then all changes are saved back
to the Table service when the SaveChanges method is called.

A process that doesn’t use the Unit of Work pattern would not track the changes to
the entities locally and apply the changes directly to the Table service when the
AddObject method is called. This removes any batching or cancellation capabilities
easily provided by the Unit of Work pattern.

277Modifying entities with the REST API is CRUD
 </content>
</entry>

If you look at the preceding AtomPub XML, you can see that it follows a similar format
to the XML used to create the storage account table in section 12.1.4 (in the “Creating
a table using AtomPub” subsection). As you can see from the preceding Atom XML,
not only are the values of each property of the entity included in the XML, but so is
the name and type of each property (notice that the Timestamp property is of type
Edm.DateTime). Because a Table service table is effectively schemaless, and each row
could contain an entity with an entirely different set of properties, it’s important that
the entities being inserted into the table be self-describing.

 If you wanted to modify the console application in listing 12.2 to insert an entity
instead of creating a table, you could replace the URI generation with the URI we
defined earlier and replace the Atom XML with the preceding document.

 Now that you’ve created your lovely entity, let’s nuke it!

12.3.2 Deleting entities

In the product-management web page you built in chapter 11, you could delete shirts
from the product list using the following call:

var shirtContext = new ProductContext();
shirtContext.DeleteObject(shirtToDelete);
shirtContext.SaveChanges();

Deleting an entity is similar to adding an entity when using the StorageClient library. If
you wished to delete a shirt from the Products table, you’d need to add the shirt to be
deleted to the context object’s (shirtContext) tracking list using the DeleteObject
method. All changes are again tracked locally by the context object and are only saved
back to the Table service when the SaveChanges method is called (following the Unit
of Work pattern).

 Let’s now take a look at using the REST API for deleting entities from a table. To
delete an entity you need to make a DELETE request to the appropriate URI, passing in
the correct table name, partition key, and row key:

http://silverlightukstorage.table.core.windows.net
➥ /Products(PartitionKey="Shirts", RowKey="RedShirt")

The preceding URI would delete an entity called RedShirt from the Shirts partition
of the Products table from a storage account named silverlightukstorage. See the fol-
lowing listing for the code required to the delete the entity from a console application.

static void Main(string[] args)
{
 HttpWebRequest hwr = CreateHttpRequest(
 ➥ new Uri(@"http://silverlightukstorage
 ➥ .table.core.windows.net/Products(PartitionKey='Shirts'
 ➥ , RowKey='RedShirt')
 ➥ "), "DELETE", new TimeSpan(0, 0, 30));

Listing 12.3 Deleting entities using the REST API

Deletes entity
from table

278 CHAPTER 12 Working with the Table service REST API
 hwr.Headers.Add("If-Match", "*");

 var storageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager
 ➥ .AppSettings["DataConnectionString"]);

 storageAccount.Credentials.SignRequestLite(hwr)

 hwr.GetResponse();
}

OPTIMIZING DELETE PERFORMANCE IN WEB GRIDS

As explained previously, to delete an entity using the StorageClient library, you first
need to add a local copy of the entity to your context object’s tracking list. In Windows
client applications, this isn’t such a big issue, as you’ll already have a local copy of the
entities. In an ASP.NET application, if you listed the entities in a grid (as in the prod-
uct-management web page), you’d no longer have a local copy of the entity because
each web page call is stateless.

 Although you could store a copy of all entities in the ASP.NET page state, this would
massively increase the page size and reduce overall performance. Similarly, storing the
entities in the session would put unnecessary overhead on the web server, again affect-
ing the performance. Even if the grid were populated from a cache, unnecessary calls
to the cache would still have a slight impact on performance. So let’s look at some
other options.

 In the product-management web page in chapter 11, we fetched the entity from
the Table service (for the sake of simplicity) and then added that entity to the shirt-
Context’s tracking list. The following code shows how we used a LINQ query to fetch
the data from the Table service:

var entity = new ProductContext();

shirtToDelete = (from item in shirtContext.Products
 where item.PartitionKey == "Shirts"
 && item.RowKey == rowkey
 select item).First();

shirtContext.DeleteObject(entity);

shirtContext.SaveChanges();

Refetching the entity to be deleted isn’t something you should consider in a produc-
tion environment, as any unnecessary calls to the Table service will impact the perfor-
mance of your application and add to the overall running cost of your service (calls to
the Table service are billable).

 As you saw in our discussion of the REST API, you really don’t need all the data of
the object. In fact, you only need the partition key and row key, so rather than fetch-
ing the whole object, you could construct a lightweight version of the object to be
deleted.

Sets up credentials
and executes request

279Modifying entities with the REST API is CRUD
 To do this, you can define a lightweight sister class of the Product class that only
contains the PartitionKey and RowKey values. As long as the object held in the track-
ing list holds the correct PartitionKey and RowKey (which uniquely identify an
entity), you’ll have enough information to perform the delete—there’s no need to
fetch every property of the entity.

 The following code shows how you can delete an entity from the Table service
using a lightweight instance:

var shirtContext = new ProductContext();
shirtContext.DeleteObject
(
 new ProductKey
 {
 PartitionKey = "Shirts",
 RowKey = e.CommandArgument.ToString()
 }
);
 shirtContext.AttachTo("Product", entity, "*");
shirtContext.SaveChanges(saveOptions);

As you can see in the preceding code, there’s no need to fetch the entity from the
Table service because you already know the PartitionKey (Shirts), and the RowKey
can be extracted from the command argument of the Delete button. This optimiza-
tion saves you that extra fetch.

 Now that we’ve explored both inserting and deleting, it’s time to complete the set
and look at updates.

12.3.3 Updating entities

When deleting an object using the StorageClient library, you need to keep track of the
objects to be deleted in the context object for the Products table. You can use similar
logic to update objects in your application.

 Here’s an example:

var shirtContext = new ProductContext();

shirtToUpdate = (from item in shirtContext.Products
 where item.PartitionKey == "Shirts"
 && item.RowKey == "RedShirt"
 select item).First();
shirtToUpdate.Description = "I have been modified";
shirtContext.UpdateObject(shirtToUpdate);
shirtContext.SaveChanges(saveOptions);

The preceding code retrieves the RedShirt entity from the Shirts partition in the
Products table. The code then modifies the description of the entity and saves the
changes back to the Products table.

MERGING DATA

By default, the SaveChanges method will merge any changes made to the object back to
the entity stored in the Table service, rather than performing a replacement update.

280 CHAPTER 12 Working with the Table service REST API
Before we can explain what this means, let’s look at an extract of Atom XML that
describes the entity held in the Table service:

<content type="application/xml">
 <m:properties>
 <d:Description>A Red Shirt</d:Description>
 <d:Name>Red Shirt</d:Name>
 <d:PartitionKey>Shirts</d:PartitionKey>
 <d:RowKey>RedShirt</d:RowKey>
 <d:Timestamp m:type="Edm.DateTime">0001-01-01T00:00:00</d:Timestamp>
 </m:properties>
 </content>

By choosing to merge the data, you can efficiently send data back to the Table service
by only sending the modified data instead of the full entity. Table 12.1 shows how this
would work in three scenarios:

� Remote—A remote copy of the entity is stored in the Products table.
� Local—A local copy of the entity is used.
� Merged—The changes in the local version of the entity are merged with the

remote version.

As you can see in table 12.1, the only property that has changed for the entity is the
description. This means that the client application doesn’t need to send back the
name property in the Atom XML describing the entity. The following extract of the
Atom XML describes what would be returned to the Table service as part of the merge
operation:

<content type="application/xml">
 <m:properties>
 <d:Description>A Pink Shirt</d:Description>
 </m:properties>
 </content>

If you need to replace the entity stored in the Table service with your local version
rather than performing a merge, you can use the following setting in your client code:

shirtContext.SaveChangesDefaultOptions =
 SaveChangesOptions.ReplaceOnUpdate;

In this case, the Atom XML sent using the REST API would contain the full description
of the entity rather than just the changed properties.

Table 12.1 Merging data with updates

Scenario Partition key Row key Name Description

Remote Shirts RedShirt RedShirt A Red Shirt

Local Shirts RedShirt RedShirt A Pink Shirt

Merged Shirts RedShirt RedShirt A Pink Shirt

281Batching data
USING THE REST API TO MERGE OR UPDATE

When you use the REST API to update or merge data, you’re really using a combina-
tion of the delete and insert REST API functions.

 The URI to update or merge the local entity back to the Table storage is the same
URI as for the delete operation:

http://silverlightukstorage.table.core.windows.net
➥ /Products(PartitionKey='Shirts', RowKey='RedShirt')

As you can see, the URI needs to specify the PartitionKey and RowKey of the entity
being modified. Depending on the operation you’re performing, you should set the
HTTP verb to either MERGE or PUT. Finally, the body of the HTTP request should be set
to the AtomPub XML document that describes the entity (this is the same as the XML
used to create the entity).

 If you wish to modify the console application from section 12.1.1 to merge instead
of insert, you would need to change the URI and HTTP verbs in the code.

 Finally, you would need to add a new If-Match header to the request. This header
is used to ensure that the data held in the remote version of the entity has not
changed since you grabbed the local version. If you wish to ensure that data is only
modified if the data is unchanged, you should set the If-Match header to the e-tag
that was originally returned with the entity.

 If you wish to perform an unconditional update, the value of the If-Match header
should be set to "*".

 In this section, you’ve learned how to perform inserts, updates, and deletes against
your entities. But you’re unlikely to work with single entities, so it’s time to learn about
some of the complications of updating data—batching and transactions.

12.4 Batching data
In the previous sections, you used both the StorageClient library and the REST API to
insert new entities into the Products table. In this section, we’ll look at how you can
both improve performance and perform transactional changes by batching up data.

 The following code inserts multiple entities into the Products table using the Stor-
ageClient library:

var shirtContext = new ProductContext();

for (int i = 0; i < 10; i++)
{
 shirtContext.AddObject("Products",
 new Product
 {
 PartitionKey = "Shirts",
 RowKey = i.ToString(),
 Name = "Shirt" + i.ToString(),
 Description = "A Shirt"
 });
}
shirtContext.SaveChanges();

282 CHAPTER 12 Working with the Table service REST API
The preceding code will create 10 new shirts and add each new shirt to a list of objects
that are to be tracked; it does this by calling the AddObject method on the shirt-
Context object. Following the Unit of Work pattern, the context object won’t send any
changes to the Table service until the SaveChanges method is called. It will then iter-
ate through the list of tracked objects and insert them into the Products table.

 By default, the SaveChanges call will insert the entities into the table one by one
rather than batching the inserts into a single call. Figure 12.2 shows the HTTP traffic
for the preceding call, captured by using Wireshark (a packet-sniffing tool).

 As you can see from figure 12.2, to insert 10 shirts, the application must perform
10 HTTP POST requests to the Table service. This method can cause performance
problems if you’re inserting a large number of entities and your application is outside
of Windows Azure or your web or worker role isn’t affinitized to the same data center
as your storage account.

WARNING Due to latency, inserting 10 shirts using the preceding code took 4
seconds between our local machine and the live Table service. When running
the same code as a web role in the Windows Azure data center, it took milli-
seconds.

Although minimizing latency will give large performance benefits, you can gain larger
performance improvements by batching up inserts into single calls using entity group
transactions.

NOTE Due to the flexible nature of the Windows Azure platform, you can
host your storage account and your web and worker roles in different data
centers. As you can see from the previous example, this flexibility comes at a
price: latency. For the best performance, always affinitize your web roles,
worker roles, and storage service to the same data center to minimize latency.

12.4.1 Entity group transactions

Entity group transactions are a type of batch insert where the whole batch is treated as
a transaction, and the whole thing either succeeds or is rolled back entirely. First, let’s
look at how batch inserts are done.

Figure 12.2 By default, the context object will save each entity with an individual request
rather than saving them all in a batch.

283Batching data
 Passing SaveChangesOptions.Batch as a parameter into the SaveChanges method
calls will batch up all changes into a single HTTP POST:

shirtContext.SaveChanges(SaveOptions.Batch);

Batching up the data like this reduced our insert of 10 shirts (from the local machine
to the live service) from 4 seconds to 1 second.

 The SaveOption parameter can also be passed in with the call to the SaveChanges
method to specify what happens if the inserts aren’t entirely successful:

� SaveOptions.None—By default, when no SaveOption is passed, or when Save-
Options.None is passed, as part of the SaveChanges method, and a tracked
entity fails to be inserted, the context object will stop attempting to save any fur-
ther entities. Any entities that were saved successfully won’t be rolled back and
will remain in the table.

� SaveOptions.ContinueOnError—If this option is passed as part of the
SaveChanges call, and an entity fails to save, the context object will continue to
save all other entities.

� SaveOptions.Batch—If this option is passed as part of the SaveChanges call, all
entities will be processed as a batch in the scope of a single transaction—known
as an entity group transaction. If any of the entities being inserted as part of the
batch fails to be inserted, the whole batch will be rolled back.

These are the rules for using entity group transactions:

1 A maximum of 100 operations can be performed in a single batch.
2 The batch may not exceed 4 MB in size.
3 All entities in the batch must have the same partition key.
4 You can only perform a single operation against an entity in a batch.

In this book, we won’t discuss the REST implementation of entity group transactions
due to the complexity of the implementation. But it’s worth noting that if you decide
to use the REST implementation, the Table service only implements a subset of the
available functionality. As of the PDC 2009 release, the Table service only supports sin-
gle changesets (a changeset being a set of inserts, updates, or deletes) within a batch.

NOTE If you’re interested in looking at the REST implementation of batch-
ing, you should look up the “Performing Entity Group Transactions” MSDN
article: http://msdn.microsoft.com/en-us/library/dd894038.aspx.

Entity group transactions are executed using an isolation method known as snapshot
isolation. This is a standard method of isolation used in relational databases such as SQL
Server or Oracle; it’s also known as multiversion concurrency control (MVCC). A snap-
shot of the data is taken at the beginning of a transaction, and it’s used for the duration
of the transaction. This means that all operations within the transaction will use the
same set of isolated data that can’t be interfered with by other concurrent processes.
Because the data is isolated from all other processes, there’s no need for locking on the

284 CHAPTER 12 Working with the Table service REST API
table, meaning that operations can’t be blocked by other processes. On committing
the transaction, if any modified data has been changed by another process since the
snapshot began, the whole transaction must be rolled back and retried.

12.4.2 Retries

In order to handle the MVCC model, your code must be able to perform retries. The
ability to handle retries is built into the StorageClient library and can be configured
using the following code:

shirtContext.RetryPolicy =
 RetryPolicies.Retry(5, TimeSpan.FromSeconds(1));

The preceding retry policy will reattempt the SaveChanges operation up to five times,
retrying every second. If you don’t wish to set a retry policy, you can always set the pol-
icy as NoRetry:

shirtContext.RetryPolicy = RetryPolicies.NoRetry;

If you need more complicated retry polices with randomized back-off timings, or if
you wish to define your own policy, this can also be achieved by setting an appropriate
retry policy. Unfortunately, if you’re using the REST API directly, you’ll need to roll
your own retry logic.

 In order to make use of the standard retry logic, you’ll need to use the
SaveChangesWithRetries method rather than the SaveChanges method, as follows:

shirtContext.SaveChangesWithRetries();

So far we’ve covered the modification of data in quite a lot of detail. But entity group
transactions can also be useful for querying data. With that in mind, it’s worth break-
ing away from data updates and focusing on how to retrieve data via the REST API.

12.5 Querying data
In this section, we’ll take a look at how to query data held in the Table service by using
both the StorageClient library and the REST API directly. The knowledge that you gain
from this section will come in useful when we look at how to store data efficiently. In
particular we’ll look at how you can

� Retrieve entities using the REST API

� Query using LINQ

Use retries for queries too

Although retry policies are vital when using entity group transactions, they can also
be useful when querying data. Your web and worker roles are based in the cloud and
can be shut down and restarted at any time by the Fabric Controller (such as in a case
of a hardware failure), so to provide a more professional application, it may be advis-
able to use retry policies when querying data.

285Querying data
� Filter data using the REST API

� Filter data using LINQ

� Select data using LINQ

� Page data

To get started, let’s look at how to retrieve data from a table using the REST API.

12.5.1 Retrieving all entities in a table using the REST API

In this section we’ll look at how to build a small console application that will display all
the entities in the Product table. This application is similar to the one that you built
earlier to list tables in storage accounts.

 The base URI used to query the Products table is the same base URI you used to
insert, update, and delete table entities. To return all shirts stored in the Products
table in the development storage account, you would make an HTTP GET request
using the following URI:

http://127.0.0.1:10002/devstoreaccount1/Products

The code in listing 12.4 will return all entities in the Products table and display the
result in the console window.

static void Main(string[] args)
{
 HttpWebRequest hwr =
 CreateHttpRequest(new Uri(@"http://127.0.0.1:10002
 ➥ /devstoreaccount1/Products"), "GET",
 ➥ new TimeSpan(0, 0, 30));

 var storageAccount =
 CloudStorageAccount.Parse(
 ConfigurationManager
 ➥ .AppSettings["DataConnectionString"]);

 storageAccount.Credentials.SignRequestLite(hwr)

 using (StreamReader sr =
 new StreamReader(
 ➥ hwr.GetResponse()
 ➥ .GetResponseStream()))
 {
 XDocument myDocument = XDocument.Parse(sr.ReadToEnd());
 Console.Write(myDocument.ToString());
 }
}

The code in listing 12.4 is pretty much the same code as in listing 12.1 (which listed all
the tables in a storage account). The only modification you need to make to that code
is to change the URI for the HTTP request at q to the URI of the Products table.

Listing 12.4 Listing the entities in the Products table using the REST API

Specifies URI
for request

q

Sets up credentials
and signs request

Executes request
and displays output

286 CHAPTER 12 Working with the Table service REST API
 The REST API call that you used to list all product entities adheres to the AtomPub
protocol, so the result that’s returned to the console window will display the entities
from the Products table in Atom XML format, as shown in the following listing.

<feed xml:base="http://127.0.0.1:10002/devstoreaccount1/" xmlns:d="http://
schemas

.microsoft.com/ado/2007/08/dataservices" xmlns:m="http://
schemas.microsoft.com/

ado/2007/08/dataservices/metadata" xmlns="http://www.w3.org/2005/Atom">
 <title type="text">Products</title>
 <id>http://127.0.0.1:10002/devstoreaccount1/Products</id>
 <updated>2009-08-01T11:23:48Z</updated>
 <link rel="self" title="Products" href="Products" />
 <entry m:etag="W/"datetime'2009-07-23T19%3A55%3A38.7'"">
 <id>http://127.0.0.1:10002/devstoreaccount
 ➥ /Products(PartitionKey='Shirts',RowKey='BlueShirt')</id>
 <title type="text"></title>
 <updated>2009-08-01T11:23:48Z</updated>
 <author>
 <name />
 </author>
 <link rel="edit" title="Products" href="Product(PartitionKey=
 ➥ 'Shirts',RowKey='BlueShirt')" />
 <category term="AiAChapter7Web_WebRole.Products"
 ➥ scheme="http://schemas.
microsoft.com/ado/2007/08/dataservices/scheme" />
 <content type="application/xml">
 <m:properties>
 <d:Name>Blue Shirt</d:Name>
 <d:Description>A Blue Shirt</d:Description>
 <d:Timestamp m:type="Edm.DateTime">2009-07-

 ➥ 23T19:55:38.7</d:Timestamp>
 <d:PartitionKey>Shirts</d:PartitionKey>
 <d:RowKey>BlueShirt</d:RowKey>
 </m:properties>
 </content>
 </entry>
 <entry m:etag="W/"datetime'2009-07-23T19%3A13%3A28.09'"">
 <id>http://127.0.0.1:10002/devstoreaccount
 ➥ 1/Products(PartitionKey='Shirts',RowKey='RedShirt')
 </id>
 <title type="text"></title>
 <updated>2009-08-01T11:23:48Z</updated>
 <author>
 <name />
 </author>
 <link rel="edit" title="Products" href=
 ➥ "Product(PartitionKey='Shirts',RowKey='RedShirt')" />
 <category term="AiAChapter7Web_WebRole.Products"
 ➥ scheme="http://schemas.microsoft.com/ado
 ➥ /2007/08/dataservices/scheme" />
 <content type="application/xml">

Listing 12.5 Atom XML output from the console application in listing 12.4

287Querying data
 <m:properties>
 <d:Name>red shirt</d:Name>
 <d:Description>a red shirt</d:Description>
 <d:Timestamp m:type="Edm.DateTime">2009-07-

 ➥ 23T19:13:28.09</d:Timestamp>
 <d:PartitionKey>Shirts</d:PartitionKey>
 <d:RowKey>RedShirt</d:RowKey>
 </m:properties>
 </content>
 </entry>
</feed>

The Atom XML output in listing 12.5 returns all entities stored in the Products table
(RedShirt and BlueShirt). As you can see, the returned XML is very descriptive (and
also verbose), including the name of the property, the value, and the data type.

 The verbosity of the returned XML means that the returned datasets are usually
pretty large. You should be careful to cache data whenever possible and return the
minimum amount of data required.

The verbosity of Atom XML

Hopefully, in the future, the Windows Azure Table service team will support a less ver-
bose serialization format, such as JSON, and will also support local data shaping (ex-
plained later on in this section). JSON would be an ideal format to support because
WCF Data Services (but not the Table service implementation) already supports this
method of serialization.

Using JSON would require few changes to your application code, but you’d gain large
benefits in terms of reduced bandwidth. The following code shows how the previously
returned Atom XML could be represented in JSON:

Products:
 [
 {
 "Name" : "blue shirt"
 "Description" : "a Blue Shirt"
 "Timestamp" : "2009-07-23T19:13:28.09"
 "PartitionKey" : "Shirts"
 "RowKey" : "BlueShirt"}
 },
 {
 "Name" : "red shirt"
 "Description" : "A Blue Shirt"
 "Timestamp" : "2009-07-23T19:13:28.09"
 "PartitionKey" : "Shirts"
 "RowKey" : "RedShirt"}
 },
]

As you can see, the JSON representation is much more readable and terse, meaning
that the size of the returned documents would be greatly reduced and will therefore
improve the speed of your application. Hopefully this will be supported in future ver-
sions of the Table service.

288 CHAPTER 12 Working with the Table service REST API
12.5.2 Querying with LINQ

Because the Table service is implemented using ADO.NET Data Services, you can use
the WCF Data Services client library to perform server-side queries using LINQ rather
than querying the REST API directly.

 The following code shows how the Products table was exposed in the Product-
Context class created in listing 11.2 (in chapter 11):

public DataServiceQuery<Product> Products
{
 get{return CreateQuery<Product>("Products");}
}

Rather than executing and returning a list of products from the Products table stored
in the Table service, the Products property will generate and return a new query that
won’t be executed until the collection is enumerated. Because the execution of the
DataServiceQuery is deferred, you can modify the returned query to include any fil-
ters that you may require prior to executing the query.

 Because DataServiceQuery implements the IQueryable interface, you can define
the query that should be executed by the Table service in your application by using
LINQ. The following code is a LINQ query that will return all the products in the
Shirts partition of the Products table:

var shirts = from shirt in shirtContext.Products
 where shirt.PartitionKey == "Shirts"
 select shirt;

foreach (var shirt in shirts)
{
}

In the preceding query, the Products property of shirtContext is IQueryable, so you
can make this the data source of a LINQ query. Because the query won’t be passed to
the Table service for execution until the for loop is executed, you can add additional
filter criteria to the query (such as restricting the returned data to only those shirts
that reside in the Shirts partition).

NOTE If you don’t include the where criteria in the preceding LINQ state-
ment, the underlying REST API that’s executed would be the same as the call
made in listing 12.4.

12.5.3 Filtering data with the REST API

In the previous section, we looked at a LINQ query that included a WHERE clause,
restricting the data returned from the Table service to include only those shirts in the
Shirts partition. We’ll now look at how you can modify your use of the REST API to
perform server-side filtering.

289Querying data
RETURNING A SINGLE ENTITY

As stated previously, the combination of the PartitionKey and RowKey uniquely iden-
tifies an entity in a table. If you wish to return a single entity from a table, and you
know these two values, you can efficiently return the entity. The following URI would
return the RedShirt entity from the Shirts partition:

http://127.0.0.1:10002/devstoreaccount1
➥ /Products(PartitionKey='Shirts',RowKey='RedShirt')

To execute this query, you could modify the console application in listing 12.4, replac-
ing the URI with one here. The Atom XML returned from the query would be similar
to the data returned in listing 12.5, but it would only contain the RedShirt entity.

QUERYING ENTITIES

If you need to return zero or more entities based upon some filter criteria (such as all
shirts that cost $10), you could use the following URI to define the REST query:

http://127.0.0.1:10002/devstoreaccount1/Products$filter=<query>

Just replace the <query> in the URI with the filter that you want to run server-side.
Again, you can modify the console application in listing 12.4 to use this URI. When the
query is executed, all entities that match the query will be returned in Atom XML for-
mat, as in listing 12.5.

QUERY EXPRESSIONS

Let’s take a quick look at the syntax of the query expression applied in the REST API.
(We’ll look at using these queries in the more familiar LINQ syntax in the next section.)

 As of the PDC 2009 release, the Table service only supports the query expressions
listed in table 12.2.

Table 12.2 Query expressions supported by the Table service

Supported query expression Description (C# equivalent operator)

eq Equals (==)

gt Greater than (>)

ge Greater than or equal to (>=)

lt Less than (<)

le Less than or equal to (<=)

ne Not equal to (!=)

and And (&&)—Boolean properties only

not Not (!)—Boolean properties only

or Or (||)—Boolean properties only

290 CHAPTER 12 Working with the Table service REST API
You could apply these queries to a REST API query to return all shirts with the descrip-
tion “A Red Shirt”. The URI would look like this:

http://127.0.0.1:10002/devstoreaccount1/Products?$filter=
➥ Description%20eq%20'A%20Red%20Shirt'

To return all shirts in the Shirts partition that have the description “A Red Shirt”,
you’d use the following URI:

http://127.0.0.1:10002/devstoreaccount1/Products?$filter=
➥ PartitionKey%20eq%20'Shirts'%20and%20Description%20eq%20
➥ 'A%20Red%20Shirt'%

12.5.4 Filtering data with LINQ

In the previous section, we looked at how to filter queries server-side using the REST
API. We’ll now look at how the REST API maps onto the LINQ queries.

 As you may have guessed, LINQ queries eventually get resolved to the REST API
URIs like the ones we looked at in the previous section. This means that although
LINQ has a large and rich syntax, only those methods that map directly to the REST
API can be supported.

 While you’re debug-
ging a LINQ query in
Visual Studio, you can
either hover over or put a
watch on a context object
(such as shirtContext in
figure 12.3) and you’ll be able to see the underlying REST API query. Figure 12.3 shows
the REST API query for a LINQ query that returns all products in the Shirts partition.

 Let’s now look at the typical queries that you’ll be able to perform.

EQUALITY COMPARISONS

As you can see from the list in table 12.2, only equality, range comparisons, and Bool-
ean comparisons can be performed using the Table service. The following queries are
typical equality comparisons that can be performed:

where shirt.RowKey == "Red Shirt"

or

where shirt.Description != "A Red Shirt"

or

where shirt.Partition == "Shirts"
 && shirt.Description != "A Red Shirt"

RANGE COMPARISONS

The Table service supports the filtering of range data using range queries. For exam-
ple, the following WHERE clause will return those shirts priced at $50 or more, and less
than $70:

Figure 12.3 Mapping a LINQ query back to the REST API

291Querying data
where shirt.Price >= 50 && shirt.Price < 70

Because data is stored in the Table service as native types, rather than as string repre-
sentations, the Table service will perform comparison routines using the native types
rather than string comparisons. The following query will return all shirts whose price
is greater than or equal to $50.20:

where shirt.Price >= 50.20

If this query were performed as a string comparison (which you would have to do with
Amazon SimpleDB), it would not return shirts priced at $60 (because there are fewer
characters in the string than 50.20) unless the price were stored as 60.00.

 In Windows Azure Table service, the only time you need to worry about perform-
ing equivalent string comparisons is if you store a non-native string type as a partition
or row key. Partition and row keys are always represented as strings in the Table ser-
vice, so if you need to perform range comparisons on these entities, you’ll need to
ensure that the string lengths of the stored data are correct.

BOOLEAN LOGIC

As stated earlier, the Table service does respect property types. This means you can
perform Boolean logic against entity properties that are defined as bool. For exam-
ple, you could perform the following WHERE clause against a shirt that’s marked as a
genuine Hawaiian shirt:

where shirt.IsMadeInHawaii && shirt.Price > 50

PREFIX QUERIES

Using the range comparison and Boolean logic, you can manipulate your LINQ and
REST queries to return all entities that start with a particular string. For example, if
you wanted to return all shirts that were present in any of partition1, partition2,
partition3, or partition4, you could use the following query:

where shirt.PartitionKey.CompareTo("Partition1") >= 0 &&
shirt.PartitionKey.CompareTo("Partition5") < 0

LINQ TO OBJECTS QUERIES

Even though only a small subset of the LINQ syntax is available to be executed by the
Table service, you can still perform in-memory LINQ queries (LINQ to Objects). In-
memory LINQ queries do provide full access to the LINQ syntax, but all queries are
executed on the client side, so they require the full dataset to be returned by the Table
service first. This approach isn’t suitable for situations where you’re working with a
large set of data.

 By now you should have a taste of the types of queries that you can perform against
the Table service. Let’s now look at how you can shape the data that’s returned from
your queries.

292 CHAPTER 12 Working with the Table service REST API
12.5.5 Selecting data using the LINQ syntax

As you’ll have noticed in the supported LINQ syntax list (table 12.2), there was no
mention of the SELECT statement. You can use the SELECT statement to return the
entire entity, but you can’t use SELECT to instruct the Table service to only return a
subset of the entity properties.

RETURNING AN ENTIRE ENTITY USING SELECT

To illustrate the limitations of using SELECT, let’s look again at a LINQ query that
returns a product entity in its entirety:

var shirts = from shirt in shirtContext.Products
 where shirt.PartitionKey == "Shirts"
 select shirt;

This LINQ query was used earlier to return all entities that reside in the Products
table. The following code is an Atom XML extract of one of the entities returned by
the preceding LINQ query:

<content type="application/xml">
 <m:properties>
 <d:PartitionKey>Shirts</d:PartitionKey>
 <d:RowKey>shirts0</d:RowKey>
 <d:Timestamp m:type="Edm.DateTime">
 2009-07-29T21:14:45.022Z
 </d:Timestamp>
 <d:Description>A Shirt</d:Description>
 <d:Name>shirtshirts0</d:Name>
 </m:properties>
</content>

As you can see from the XML for the returned entity, every property of the product
entity is returned by the Table service (PartitionKey, RowKey, Timestamp, Descrip-
tion, and Name).

 If the Products table was held in SQL Server rather than the Table service, and the
LINQ statement was executed against the database using LINQ2SQL or LINQ2Entities,
the following SQL statement would be generated and executed on the SQL Server
database:

SELECT PartitionKey, RowKey, Timestamp, Description, Name
FROM Products
WHERE PartitionKey = 'Shirts'

SHAPING THE QUERY

If you’re using LINQ2SQL or LINQ2Entities with a SQL Server database, and you don’t
need to return the entire entity, you might choose to write a more efficient LINQ
query that only requests and returns specific columns from the SQL Server Database.
The following SQL statement requests just the Name and Description properties:

SELECT Name, Description
FROM Products
WHERE PartitionKey="Shirts"

293Querying data
The preceding SQL statement is less intensive to execute on the server (as there is less
data being queried) and it will also use less network bandwidth due to the reduced
dataset being returned to the application.

 When you’re using LINQ2SQL or LINQ2Entities, you can modify your less efficient
LINQ statements, like this:

select entity

to generate the more efficient SQL statement:

select new
 {
 Name = newShirt.Name,
 Description = newShirt.Description
 };

This would modify the previous select entity LINQ statement so it looks like this:

var shirts = from shirt in shirtContext.Products
 where shirt.PartitionKey == "Shirts"
 select new
 {
 Name = newShirt.Name,
 Description = newShirt.Description
 };

Unfortunately, because the Table service doesn’t support data shaping using the
SELECT statement, you’d get a nasty exception if you attempted to run the preceding
LINQ query. As a result, whenever you execute queries against the Table service, every
property of the entity will always be returned as part of the query.

 If you really do need to shape the returned data in your application, and you don’t
mind that the entire entity will be returned from the server, you can always shape it
locally using the following code:

var shirts = from newShirt in
 (
 from shirt inshirtContext.Products
 where shirt.PartitionKey == "Shirts"
 select shirt
).ToList()
 select new
 {
 Name = newShirt.Name,
 Description = newShirt.Description
 };

The preceding code uses the same LINQ query as in section 12.5.2 to filter the data in
the Table service, but this time it returns the entire entity. By calling the ToList
method on the inner LINQ query, you can ensure that the server-side query will return
all properties of the entity.

 Finally, the result of the ToList method is fed into the outer LINQ2Object query,
which performs in-memory shaping of the data, returning a new anonymous type con-
taining the two properties that you want.

294 CHAPTER 12 Working with the Table service REST API
 You should be aware that although this query returns the entities shaped as you
specify, it won’t improve server-side or bandwidth efficiency. If you have a very large
entity with an infrequently used property that you don’t need in a particular query,
this unused property will still be returned by the Table service.

12.5.6 Paging data

By default, SELECT queries will only return 1,000 items in a single result set. Not only is
this the default amount of data returned, but it’s also the maximum amount of data
returned.

 If you wish to return a smaller amount of data, you can set this with the Take state-
ment in LINQ, as follows:

(from shirt inshirtContext.Products
where shirt.PartitionKey == "Shirts"
select shirt).Take(100);

The preceding LINQ statement will return the first 100 items in the Shirts partition.
The LINQ Take extension method will be resolved to the following query string
parameter in the URI for the REST API call:

&top=100

If more items could be returned by the query than are present in the result set, contin-
uation tokens will be provided to allow you to retrieve the next set of data in the query.
This method of using continuation tokens effectively provides a method of paging.

 If you wanted to return all items in the Shirts partition of the Products table, but
it potentially contains more than 1,000 items, you could run the following REST API
query:

http://silverlightukstorage.table.core.windows.net/Products?$filter
➥ =PartitionKey%20eq %20'Shirts'

Because more than 1,000 items would normally be returned in the query, you’ll
receive the following continuation tokens in the response:

x-ms-continuation-NextPartitionKey: Shirts
x-ms-continuation-NextRowKey: 1001

If you wanted to return all the items in the Shirts partition that were not returned as
part of the original query, you could retrieve the next set of data using the following
query:

http://silverlightukstorage.table.core.windows.net/Products?$filter
➥ =PartitionKey%20eq %20'Shirts'&NextPartitionKey=Shirts&NextRowKey=1001

The preceding query would return all products in the Shirts partition from RowKey
1001 onwards, or at least the next 1,000 entities.

295Summary
12.6 Summary
In this chapter, we’ve taken quite a deep dive into using both the StorageClient library
and the Table service REST API.

 You’ve learned how to use the REST API to modify tables in a storage account, and
to perform CRUD functions against those tables. We also looked at the AtomPub for-
mat and at how this impacts your applications. Finally, we looked at how you can effi-
ciently update and query data.

 By gaining an understanding of the REST API, you can maximize the performance
of your applications and understand the limits of the service.

 Based on the last two chapters, you should now have a pretty good idea of how to
use the Table service. Later on in the book, we’ll look at how you can apply this knowl-
edge in your applications.

 For now, we’ll continue with our focus on structured data and look at SQL Azure,
the relational database in the cloud.

SQL Azure and
relational data
Most applications that work with data today use a relational data model. It’s a
model we’re all familiar with, and we know how to manage and develop with it. SQL
Server has been with us for many years, and it’s going to be with us as we move into
the cloud.

 Over the years, SQL Server has matured to meet the different needs of its cus-
tomers. It started as a spunky departmental server and moved into the desktop
space, mobile device space, and the enterprise space. The relational data engine
has been the first component to make each of these moves. The rest of the compo-
nents usually follow shortly after, such as Integration Services (SSIS), Reporting Ser-
vices (SSRS), and Analysis Services (SSAS). The cloud isn’t any different. The SQL

This chapter covers
� Leveraging the power of SQL Server for cloud

applications

� Easy ways of migrating an on-premises
database to the cloud

� Avoiding potholes during migrations
296

297Setting up SQL Azure
Server team is bringing the data engine to the cloud first, and the rest of the compo-
nents of the system will follow it quickly.

13.1 The march of SQL Server to the cloud
When Azure was first released as a CTP in November of 2008 at the PDC, SQL Azure
wasn’t on stage. There was something like SQL involved, but it wasn’t a relational
engine. It was more like the Azure Table service, but geared for true enterprise needs
(beyond the massive scale Tables gives you).

 Developers were scared and confused. If they were going to move to the cloud,
they surely needed a data platform they were comfortable with—something that made
it easy for them to migrate their applications without having to rewrite the data tier.
Microsoft heard this feedback, tabled what they had (pun unfortunately intended),
and delivered what we now call SQL Azure.

 Developers wanted something like SQL in the cloud because they needed a data
platform they could easily migrate to from on-premises databases. SQL Azure not only
gives you the relational database you’re used to, but also supports all of the common
tools and APIs you’re used to working with, such as ADO.NET and TDS.

 You can easily port a traditional database from SQL Server to SQL Azure in a matter
of days, if not hours. There are some restrictions, and we’ll cover those, but for the
most part it’s easy and straightforward.

 Future versions of SQL Azure are sure to contain the other components of SQL
Server. Many customers we speak with want to keep their applications local but move
all of their business intelligence applications and their heavy computing needs to the
cloud. This is a scenario we have no doubt will be supported at some future date.

13.2 Setting up SQL Azure
The first step in creating a database in SQL Azure is to log into your Azure portal and
select the SQL Azure tab on the left.

 If you haven’t created a SQL Azure server yet, you’ll be prompted to create a SQL
Azure management account, which is like the SA account for a normal SQL Server
installation. You’ll need to provide a username and password, and to specify in which
data center region you’d like the server to be provisioned. You’ll most likely want it in
the same region that your Azure applications are running in. The steps are pretty easy,
as seen in figure 13.1.

 Once your account is created, your server will be provisioned and you’ll be given
the server name. This screen is where you’re able to manage your databases and your
SQL Azure firewall settings. In figure 13.2, the server name is mlwwmqca6u. Some-
times you’ll need the fully qualified server name, which in this case is
mlwwmqca6u.database.windows.net.

 Once you have a SQL Azure server provisioned, you’ll be able to create a database
in that server.

298 CHAPTER 13 SQL Azure and relational data
An on-premises SQL Server setup has a lot of infrastructure concerns that go along
with it: how much RAM it has, what the file group configuration is, what resources are
assigned to which instance, what the appropriate resource governing levels should be,
and so on. You have none of these concerns with a SQL Azure server, which is just a
logical grouping of the databases you’ve created and doesn’t represent a pool of
resources at all. The only resource shared by a SQL Azure server is the firewall configu-
ration. Your SQL Server in the cloud isn’t really a server, but a collection of settings. It
mimics a server when you connect to it, but your databases are actually spread across a
farm of commodity hardware running SQL Server.

13.2.1 Creating your database

When you set up a SQL Azure account, you’ll be given your own master database,
which is listed in the Databases tab shown in figure 13.3. You’ll need to use the Create
Database button at the bottom of the list to start creating your own databases through
the portal.

Figure 13.1 Creating a server administrator account for SQL Azure is easy. This is essentially
an SA account in the cloud. You can’t leave your password blank.

Figure 13.2 Your SQL Azure server name. It’s short and easy to remember. I know I can
turn this one into a backronym somehow.

299Setting up SQL Azure
You can also create a database manually by connecting to the master database with the
SQLCMD command prompt application and executing a CREATE DATABASE command.
A sample is shown in figure 13.4. You can provide a MAXSIZE parameter to select either
the 1 or 10 GB size. If you don’t select a size, a 1 GB database will be created. As of the
writing of this book, a 50 GB database has been announced, but not yet released.

NOTE You won’t be able to connect with SQLCMD, or anything else, until you
configure the SQL firewall. We’ll cover this in a little bit.

13.2.2 Connecting to your database

Once you click the Create Database button, you’ll be prompted to provide a database
name and choose the size limit for the database. Your options for a size limit are cur-
rently 1 GB and 10 GB. The reasons for these sizes will be discussed later in this chapter.

 For this example, we created a database called AzureInAction, with a size of 1 GB.
Once you have created your database, you can retrieve the connection string to that

Figure 13.3 Your list of
databases and the buttons to
manage them. You haven’t
created any yet, but you were
given your own master
database. You aren’t charged
for the master database.

Figure 13.4 Adding a new database to SQL Azure with the SQLCMD tool, just like
in the old days. You have to have the firewall configured before you do this.

300 CHAPTER 13 SQL Azure and relational data
database by selecting it in the list and using the Connection Strings button near the
bottom of the list. The connection string displayed (as shown in figure 13.5) will con-
tain the full address of the server, your username, and a place for your password.

 You’ll eventually create additional SQL user accounts in your database. You should
create a special account for each user or application using the database, and not let
them use the SA account. The SA account should only be used by you for manage-
ment purposes.

 Notice the brianhprince@mlwwmqca6u username in the ODBC connection string.
Some tools will require this form of a username because of how they implement the
TDS protocol, which is what underlies all connections to SQL Server.

 One last thing you need to do to start using your database is to allow Azure-based
applications to connect to the database. This is done on the Firewall Settings tab of
the main administration screen. You’ll need to check the Allow Microsoft Services
Access to This Server check box, as shown in figure 13.6. This will create a default rule
allowing Azure-based applications the right to connect to your server. The firewall will
be discussed in more detail later in this chapter.

 When you’ve completed these few steps, you’ll have created a server, created a
database on that server, and retrieved the connection strings you’ll need to start using
the server. In our example, we chose a 1 GB database; our next step is to discuss why
we only have two options.

13.3 Size matters
There are two basic size limits you can choose from in SQL Azure: 1 GB and 10 GB.
These are the maximum sizes that databases can be, and these sizes are the basis for
how Microsoft will bill you for usage. The 1 GB database (the Web Edition) is charged

Figure 13.5 SQL Azure connection strings are displayed in the Azure portal, making it easy to
know what you need to use in your code. Sometimes changing the connection string is all you
need to do to move your application’s data to the cloud.

Figure 13.6 Enabling the SQL
firewall to allow Azure
application traffic to connect to
your database. Only IP addresses
listed on this screen are allowed
to connect to your databases.
The check box at the top allows
for all Azure services under your
account to connect.

301Size matters
at $9.99 per month, and the 10 GB (called the Business Edition) is charged at $99.99
per month. The charges are fixed and don’t take into account the real size of the data-
base, just the potential maximum size it can have. The size of your master database,
logs, and indexes don’t count toward the total size of the database when it comes to
the size limits and charges.

 You’ll also be charged for any bandwidth used by your SQL Azure server that
crosses a data center boundary. For example, if you have a mobile application access-
ing the SQL Azure database, bandwidth used by SQL Azure to those clients will be
metered and billed for. If your Azure application is using the database, and they both
reside in the same data center (aka geographic region), the bandwidth used won’t be
billed for because you aren’t crossing a data center boundary.

 The size of a database is fixed when it’s created. If a 1 GB database grows too large,
it will stop inserting new data. Databases won’t automatically upgrade to a larger size.
If you need a larger size, you’ll need to use an ALTER DATABASE command and modify
the MAXSIZE property.

 The biggest reason for this limited size selection is the SLA that Microsoft provides
to its customers. SQL Azure runs on a scalable and robust platform, with your data
being replicated to different physical servers and disks in real time. The 1 GB and 10
GB sizes are the only sizes they feel they can currently support with the SLA defined as
“Monthly Availability” of 99.9 percent. At this time, they couldn’t guarantee a high
SLA like this with a massive database. How quickly could you restore full function to a
32 TB database after a cataclysmic failure?

 You should select the smallest size necessary to run your application. Currently
there aren’t any differences between the options, except for the size limit. In the
future, the higher-end options will include extra features, such as autopartitioning,
CLR support, and fanouts.

 If your database is larger than 10 GB, you aren’t out of luck. You do have a couple
of options that are common in the SQL world when a database starts to overwhelm the
hardware it’s running on: partitioning and sharding. In this case, we’ll use these strat-
egies to work around the size limits that SQL Azure presents us.

13.3.1 Partitioning your data

The first option you have in dealing with a database that’s too large for SQL Azure is to
partition your data.

 Imagine a normal application database schema. There are lots of tables, but all
tables can be grouped into families. In our fictional DayOldSushiOnline.com website,
we might have one set of tables that focus on customer data, a second set focusing on
orders and order history, and a third set for product data and pricing, as shown in fig-
ure 13.7.

 Data partitioning is the strategy of dividing up your database in a vertical manner,
breaking your schema along family lines. In our example, this would create three
databases with the names DOSO_customers, DOSO_orders, and DOSO_products (see

302 CHAPTER 13 SQL Azure and relational data
figure 13.8). This does tend to break relationships and queries across these families,
requiring a significant amount of rework in your application code related to data han-
dling, as well as in revising the stored procedures and queries in your database.

 This strategy will create three smaller
databases, each hopefully fitting into the
10 GB limit of SQL Azure. This is com-
monly done with on-premises databases
because it allows the infrastructure team
that supports the SQL Servers to tune
each database, and its storage system, to
the needs of that database. In our exam-
ple, the products database is going to

receive a lot of read traffic, with little write traffic. On the other hand, the orders data-
base is likely to get a mixture of both, with more emphasis on write-related perfor-
mance. This is a great approach for keeping the load on one part of the database from
negatively impacting another part of the database.

 This strategy can lead to more complex backup and restore operations, because
you’ll need to guarantee transactional consistency across the different databases. That
isn’t much of a challenge when everything is in the same database.

13.3.2 Sharding your data for easier scale

Partitioning your data is fine, but it can become troublesome once your system
reaches the true scale only the internet can provide. You might be able to break a fam-
ily of tables down once more, but you’re eventually backed into a corner and have to
resort to expensive hardware tricks to continue to scale. This also continues to make
your data-access code more and more complex.

 Another option is to shard your data. Partitioning involves breaking your schema
along vertical lines, whereas sharding is breaking your data along horizontal lines. You
can see in figure 13.9 how this might look for the DayOldSushiOnline.com database.
Notice we used the word schema with the partitioning strategy, and the word data with
the sharding strategy.

 When you shard a database, you create several databases with each new shard hav-
ing the exact same schema as the original. Then you break the data into chunks, and
place each chunk into its own shard. The strategy you use to define the boundaries of
your chunks will vary based on the business and growth natures of your system. A sim-
ple strategy to start with, but one that will need rebalancing shortly, is to break the

Customers

Companies

CustomerAudit

ShoppingCart

Orders

LineItems

PurchaseOrders

OrderHistory

Products

ProductAvailability

ProductImages

DOSO_Full_db

Figure 13.7 A sample application database schema
for DayOldSushiOnline.com. The tables naturally fall
into three families: customer data, orders and order
history, and product data and pricing.

DOSO_Customers DOSO_Orders DOSO_Products

Customers

Companies

CustomerAudit

ShoppingCart

Orders

LineItems

PurchaseOrders

OrderHistory

Products

ProductAvailability

ProductImages

Figure 13.8 Our schema partitioned into families
of tables

303How SQL Azure works
chunks on the customer name field, as in figure 13.9. Each shard has its own copy of
common or static data—in this case, the product data. This helps performance by pro-
viding local replicas of commonly needed data. This data could be partitioned out,
but this would result in more complexity in your infrastructure.

 In our example, the first shard will have all of the data that’s related to any cus-
tomer with a last name starting with A to K. The other two shards will cover the ranges
L to Q, and R to Z. As new customer records are created, they’re routed to the appro-
priate database. This approach can keep your data-layer code fairly straightforward, as
all of the code is identical regardless of which database the customer is located in. The
only code that needs to be added is some logic to look up which database connection
string should be used for that customer. This can easily be isolated in your data-access
layer, and the connection strings can be managed through the configuration system.

 As we mentioned previously, your shards can become out of balance when you use
this simple strategy. Some shards may become significantly larger than others, and this
leads to a disproportionate use of the resources on each server. There are better strat-
egies for how you might shard your data. One approach is to mix all of the customers
up, and assign each new customer to the latest, smallest database. This, in effect, shards
the database based on when the customer account was created, and not by customer
name. This makes it easy to create new shards in the future, as the size of each database
reaches its effective limit. When the last shard reaches capacity, you dynamically create
a new shard, enroll it in the configuration system, and start adding new customers to it.

13.4 How SQL Azure works
Although we say that a SQL Azure database is just SQL Server database in the sky, that’s
not entirely accurate. Yes, SQL Server and Windows Server are involved, but not like you
might think. When you connect to SQL Azure server, and your database, you aren’t con-
necting to a physical SQL Server. You’re connecting to a simulation of a server. We’d use
the term virtual, but it has nothing to do with Hyper-V or application virtualization.

Customers

Companies

CustomerAudit

ShoppingCart

Orders

LineItems

PurchaseOrders

OrderHistory

Products

ProductAvailability

ProductImages

DOSO_Customers_AK

Customers

Companies

CustomerAudit

ShoppingCart

Orders

LineItems

PurchaseOrders

OrderHistory

Products

ProductAvailability

ProductImages

DOSO_Customers_LQ

Customers

Companies

CustomerAudit

ShoppingCart

Orders

LineItems

PurchaseOrders

OrderHistory

Products

ProductAvailability

ProductImages

DOSO_Customers_RZ

Figure 13.9 What the DayOldSushiOnline.com databases look like after they have been sharded.
The result is three identical databases, each with a horizontal slice of the customer data.

304 CHAPTER 13 SQL Azure and relational data
13.4.1 SQL Azure from a logical viewpoint

The endpoint that you connect to with your connection string is a service that’s run-
ning in the cloud, and it mimics SQL Server, allowing for all of the TDS and other pro-
tocols and behavior you would expect to see when connecting to SQL Server.

 This “virtual” server then uses intelligence to
route your commands and requests to the backend
infrastructure that’s really running SQL Server. This
intermediate virtual layer is how the routing works,
and how replication and redundancy are provided,
without exposing any of that complexity to the
administrator or developer. It’s this encapsulation
that provides much of the benefit of the Azure plat-
form as a whole, and SQL Azure is no different. The
logical architecture of how applications and tools
connect with SQL Azure is shown in figure 13.10.

 As a rule of thumb, any command or operation
that affects the physical infrastructure isn’t allowed.
The encapsulation layer removes the concern of the physical infrastructure. When
creating a database, you can’t set where the files will be, or what they will be called,
because you don’t know any of those details. The services layer manages these details
behind the scenes.

13.4.2 SQL Azure from a physical viewpoint

The data files that represent your database are stored
on the infrastructure as a series of replicas. The SQL
Azure fabric controls how many replicas are needed,
and creates them when there aren’t enough available.

 There’s always one replica that’s elected the
leader. This is the replica that will receive all of the
connections and execute the work. The SQL Azure
fabric then makes sure any changes to the data are
distributed to the other replicas using a custom rep-
lication fabric. If a replica fails for any reason, it’s
taken out of the pool, a new leader is elected, and a
new replica is created on the spot. The physical
architecture, relating the different parts of SQL
Azure together, is shown in figure 13.11.

 When a connection is made, the routing engine
looks up where the current replica leader is located
and routes the request to the correct server. Because all connections come through
the router, the lead replica can change and the requests will be rerouted as needed.
The fabric can also move a replica from one server to another for performance rea-
sons, keeping the load smooth and even across the farm of servers that run SQL Azure.

Applications Tools

ODBC ADO.NET

TDS

SQL Azure firewall

SQL Azure server

Database 1 Database 2 Database n

Figure 13.10 The logical shape of
SQL Azure, and how your code will
see it. The SQL Azure server is really
just a service that emulates a real
SQL Server. Each of your databases
are spread across a farm of SQL
Servers.

Applications Tools

ODBC ADO.NET

TDS

SQL Azure server

Database 1 Database 2 Database n
Infrastructure

SQL Server

SQL Azure

SQL Server

SQL Azure

SQL Server

SQL Azure

Connection
routing Billing Provisioning

Server Server Server

Figure 13.11 How SQL Azure works
behind the scenes, encapsulating
the physical infrastructure. Your
data is replicated three times, and
moved around on the SQL Azure
fabric as needed to gain performance
and reliability.

305Managing your database
 What’s really happening behind this encapsulation is quite exciting. The infra-
structure layer contains the physical disks and networks needed to redundantly and
reliably store the bits that are part of your database. This is similar to the common
storage area network (SAN) that many database server infrastructures use. The redun-
dancy of the disks and the tight coupling of the networks provide both performance
and reliability for your data.

 Sitting on top of this infrastructure layer is a series of servers. Each server runs a set
of management services, SQL Server itself, and the SQL Azure fabric. The SQL Azure
fabric is the component that communicates with the other servers in this layer to help
them communicate with one another. The fabric provides the replication, load bal-
ancing, and failover features for the platform.

 On top of the servers is a series of services that manages the connection routing
(including the firewall features), billing, and provisioning. This services layer is the
layer that you connect with and the layer that hides all of the magic.

 Deep down under all of these covers, SQL Server really is running. Microsoft has
added these layers to provide an automated and redundant platform that’s easily man-
aged and reliable.

13.5 Managing your database
SQL Azure is heavily automated, and it protects you from the concerns of the physical
infrastructure. This frees you up to focus completely on managing your database.
There are several aspects to managing a database, and many of them remain the same
when the database is in the cloud.

 If you ever have a script that needs to know what version of SQL it’s running in, you
can check the Edition and Engine Edition values of the server. When running in
SQL Azure, you’ll receive SQL Azure and 5 respectively. This is the query you would
execute:

SELECT SERVERPROPERTY ('edition'), SERVERPROPERTY ('engineedition')

Usually, the first task you have after creating a database is moving your data up into
the cloud.

13.5.1 Moving your data

Just because your database is in the cloud and you don’t have to manage the disks
doesn’t mean you don’t have to back up your data.

 It’s true that SQL Azure provides a robust and reliable platform for your data. It
stores your data in multiple copies and load balances requests across those copies. In
some cases, this might be enough to meet your disaster recovery needs.

 But remember that, regardless of the vendor, there isn’t any service in the cloud
that protects you from stupid, there’s no service that makes a bad application work cor-
rectly, and there’s no platform that can fix bad decisions. What it can do is make them
stupider, badder, and break faster, for less money. Don’t be lulled into complacency by
the scale and redundancy the cloud gives you. You still need to think of the risks to

306 CHAPTER 13 SQL Azure and relational data
your system, and to your data, and plan for them. The redundancy protects you against
the common types of catastrophic loss, related to failing disks and other common
issues, but not all loss is catastrophic in nature. For example, this will not protect you if
a dinosaur eats Chicago or if you hire that guy Bob. Bob might execute a poorly written
update SQL script that renames all of your customers to Terrance. This means you still
need to back up your data, to protect your data from yourself and your code.

 All of this great redundancy and scale won’t protect against the disaster of the
data center getting hit by a falling satellite, a radioactive monster, or an oil-eating bac-
teria. In these cases, having your bits on several servers in the same data center won’t
help you—you’ll need geographic diversity. Only you, and the business you support,
can determine what level of disaster recovery you need, and how much you’re willing
to afford.

 Disaster isn’t your only risk. What if an upgrade goes awry, and you accidentally
delete a customer’s data in your system? Or if an automated job takes a left turn and
wipes out the order history for the past month? SQL Azure protects you against faults
in the platform, but it doesn’t protect you against faults in your own code or policies.

 Even if you don’t need to back up your data, you’ll likely need to move data at some
point. You’ll run into this when you’re migrating an existing on-premises database to
the cloud, or when you want to move the data from SQL Azure to another location.

 Right now there are only three ways to work with SQL Azure data. The first option
is to use a developer’s API to access the data and save it in some format that you can
back up and restore from. There are a lot of options in this case; you could use
ADO.NET, ODBC, or WCF Data Services, but this would be tedious and breaks our rule of
not writing any plumbing code. We don’t want to have to write our own backup tool.

 The second option is to use the Bulk Copy Program (BCP), which is used quite
often to move large amounts of data into and out of a SQL Server database. It’s one of
your best bets. When using BCP, it’s common for the DBA to disable indexing until the
import is completed, to speed up the transfer process. Once the data is loaded, the
indexes are enabled and updated based on the new data.

 To extract the data from your local SQL Server, you’ll need to run BCP from a com-
mand prompt. The command is quite simple:

bcp databasename.schema.tablename out filename.dat -S servername
➥ -U username -P password -n -q

The bcp command is straightforward. When exporting data with BCP, you need to use
the out keyword. Provide the fully qualified table name, the name of the file to write
the data to, the server name, and your username and password. The parameters tell
BCP to keep the SQL data types native (don’t convert them), and to use quoted identi-
ties in the connection string. Depending on the size of your table, the copy might take
a few minutes. Once it’s done, you can open the data file and see what it looks like.
When you’re done poking around, you can use BCP in the other direction to blast the
data into your SQL Azure database. You’ll use a similar BCP command to insert the
data into your SQL Azure database.

307Managing your database
BCP operates at a table level, so you’ll need to run it several times, once for each
table. A common trick is to write a script that will export all of the tables, one at a time,
so you don’t have to do it manually. This also helps with automating the procedure,
reducing the risk of mistakes, and making it easy to reproduce the process at any time.

 Your last option for working with data you have stored, or want to store in SQL
Azure, is SQL Server Integration Services (SSIS). SSIS is SQL Server’s platform for
extracting, transforming, and loading data. It’s a common tool used to move data in
and out of on-premises SQL servers, and it can connect to almost any data source you
need it to. You can also migrate your existing SQL Server 2008 packages to SQL Azure
(Azure can’t run packages from SQL Server 2005). If you’re going to connect with SQL
Server Management Studio (SSMS), you’ll need to use SSMS 2008 R2 or later; the ear-
lier versions don’t support SQL Azure. You can trick them into doing it, but that’s
material for a shady blog post, and not for a high-profile, self-respecting book.

 Regardless of the tool you use to connect to your database, your connection will
have to make it past the SQL Azure firewall.

13.5.2 Controlling access to your data with the firewall

Before an incoming connection will be routed to the current leader server for your
replicas, the source IP address is checked against a list of allowed sources. If the source
address isn’t in this list, the connection is denied.

 The list of approved sources is a true whitelist, meaning that the IP address must be
on the list to be allowed in. There are no other rules supported, just the list of allowed
addresses. The list is stored in the master database for your SQL Azure database server.

 The most common way to adjust the firewall settings is the one shown earlier in
this chapter, namely, by using the SQL Azure portal and making the changes through
the admin pages. You can also add entries directly into the master database by using
the stored procedures provided. The rules are stored in a table called firewall_rules
(shown in figure 13.12), and you can query it like a normal table. Because the table is
in the master database, the connection to the database performing the query must be
under the system administrator account you set up.

 To manage your firewall rules through code, you can create a connection to the mas-
ter database with your administrator account and use the provided stored procedures:
sp_set_firewall_rule will create a firewall rule, and sp_delete_firewall_rule will
remove a rule. When creating a rule, you’ll need to provide a unique name, and the two

Figure 13.12 You can see what firewall rules are being enforced with
select * from sys.firewall_rules.

308 CHAPTER 13 SQL Azure and relational data
IP addresses that form the range of addresses allowed. These addresses can be the same
if you want to grant access to a single IP address. When deleting a rule, you only need
to provide the name of the rule to be removed.

 Even applications running in Windows Azure can’t connect to your server until you
grant them permission to connect. Because application servers in Azure use virtual IP
addresses, and the roles could shut down and restart anywhere, causing their addresses
to change, there’s a special rule you can use in the firewall. If you create a rule with
0.0.0.0 as the starting and ending addresses, any Azure application will be able to con-
nect to your server. That connection must still provide a valid username and password.

 A common problem is making a change to the firewall and then immediately try-
ing to access the server from that IP address, which then fails. The cache that’s used to
speed up firewall-rule checks refreshes every 5 minutes. If you make a rule change, it’s
worth waiting up to 5 minutes before trying to see if the change works.

 The second line of defense is the use of SQL credentials to verify that people are
allowed to connect to your database.

13.5.3 Creating user accounts

Managing user accounts in SQL Azure works much the same way as in on-premises
SQL Servers. A few small differences can be found, mostly with the names of specific
roles, but in general it’s the same.

 Your first step in granting someone access to a database is to create a login for the
server itself. You need to connect to the master database in your server using an
account with the loginmanager role. This would normally be the administrator
account you created when you created your server, but any other account with that
role will work.

 Once connected, you can list the existing logins by executing the sys.sql_logins
view. To create a login, use the same command you’re used to, as shown in figure 13.13:

CREATE LOGIN theloginname WITH password='strongpasswordhere';

Figure 13.13 Creating
a new SQL Azure login
the same as with SQL
Server on-premises,
using the CREATE
LOGIN command.

309Migrating an application to SQL Azure
There are two roles that you can assign to a login in the master database. The first has
already been mentioned, the loginmanager role. This role allows the user to manage
user accounts and logins on the server. The second is the dbmanager role. Granting
this role to a user account gives it all the possible permissions it could have, making it
equivalent to the administrative account you first created.

 Once you’ve created a server login, you can create a user account in a specific data-
base based on that login. This is the same approach as in on-premises SQL Server
installations. Although you can easily do this in SSMS, many DBAs like to do this with
SQL commands. You would execute the following command while connected to the
database you want to create the user account in:
CREATE USER newusername FROM LOGIN theloginname;

 Once the user is created in the database, you can grant and revoke privileges as
you would in a normal SQL database, either with the admin tools, or with the GRANT
and REVOKE commands. SQL Azure only supports SQL users; Windows-based authenti-
cation isn’t supported by SQL Azure.

 Many people ask us when they should use SQL Azure and when they should use the
Azure Table service. This is a complex question, and one we’ve dedicated the whole
next section to.

13.6 Migrating an application to SQL Azure
One of the goals Microsoft had in delivering SQL Azure was to make it as easy as possi-
ble to migrate an existing application and its database to their Azure platform. Before
SQL Azure was released, people were worried they would have to re-architect their sys-
tems in order for them to run in the cloud.

 There are two basic ways to migrate your on-premises SQL Server data to the cloud.
The first is to extract it, and copy it up. This is the same way you might move it from
server A to server B in your own data center. The second way is to use an open source
tool, SQL Azure Migration Wizard, that was created to help ease the migration process.

13.6.1 Migrating the traditional way

The easiest way to migrate a database to SQL Azure, and one that we have used our-
selves, is to find a DBA who already knows how to do it and buy them lunch. Barring
that, there are a few steps you can go through, following a traditional approach.

 The first step is to make sure that you’ve created your SQL Azure server and know
the administrative username and password. Once that’s done, you can create the data-
base that will house your schema and data. Your goal is to script out the existing data-
base, including both schema and data, and then run that script against your cloud
server database to recreate it all.

 For this example, you’ll use SQL Server Management Studio to script out your
source database. Navigate to the database in SSMS, and right-click on it. Select Gener-
ate Scripts from the Tasks menu, and then walk through the wizard like normal. Make

310 CHAPTER 13 SQL Azure and relational data
sure that you select the option to script all objects in the database. Then, on the
options screen, make your selections according to this list:

� Convert UDDTs to Base Types—True
� Script Extended Properties—False
� Script Logins—False
� Script USE DATABASE—False
� Script Data—True

Finish the wizard. When you’re done, the entire script will be loaded in a window.
 You now need to remove some parts of the script to make sure it’ll work in the cloud:

� Delete any occurrence of SET ANSI_NULLS ON.
� Delete any occurrence of WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE

= OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS

= ON) ON [PRIMARY] in a CREATE TABLE command.
� Delete any occurrence of ON [PRIMARY] in a CREATE TABLE command.

Once you’ve made these changes to the script, you may connect to the destination
database and execute the script. You can use SQLCMD for this, or SSMS.

 This is a lot of work, and it can be tedious making sure you have modified the
script to avoid anything SQL Azure might not support. Thankfully there is an open
source tool that can help.

13.6.2 Migrating with the wizard

The previous section might have scared you
away from ever trying to migrate data to SQL
Azure. It wasn’t meant to, but there are a lot of
little details to be considered. Fortunately,
there’s an open source project hosted on Code-
Plex called SQL Azure Migration Wizard that
can help you out with this process. The project
URL is http://sqlazuremw.codeplex.com.

 The wizard can be used in several different
scenarios. It can handle moving or analyzing a
database from a SQL Server to SQL Azure, from
SQL Azure to a SQL Server, or from SQL Azure to
SQL Azure. When you run the tool, you can ana-
lyze the database for compatibility, generate a
compatible script, and migrate the data. You can
see the options available to you in figure 13.14.

 When you start the tool, you’ll need to point
it at the source database. You’ll be given the
options to select the objects in the database you
want to analyze and migrate.

Figure 13.14 The SQL Azure
Migration Wizard is a great tool
when migrating or planning to
migrate data from SQL Server to SQL
Azure. It can help in modifying your
database so it’s compliant, and it
also helps move the data.

311Limitations of SQL Azure
 The wizard is driven by a powerful rules engine with over 1,000 compatibility rules
already programmed in. These rules are in an XML file, and it’s easy to modify them to
meet your needs. The rules detect a condition that isn’t supported by SQL Azure, and
specify how to fix it. This might be as simple as converting a data type to a type that’s
supported, or something more intense.

 Once the analysis is done, you’ll receive a report on the objects that need to be
changed to become compatible with SQL Azure. You can stop here and use the report
to make decisions, or you can keep going to migrate your data.

 You’ll need to provide a destination database connection string and credentials if
you want the wizard’s help in migrating your data. It’ll connect to SQL Azure and exe-
cute the new script. It’ll handle creating the tables and other objects, as well as migrat-
ing the data.

 Migrating the data tends to be the most difficult part. If you’re doing this by hand,
even after you sort out the changes you need to make to your script, you still need to
worry about timeouts in the connection and batching your data during the upload.
You don’t want all of your data thrown out because the connection was reset. The
migration wizard handles all of this for you, so you don’t have to worry about anything.

 Because SQL Azure is running in the cloud, there are some limitations. Some of
these are related to schemas, and some are related to functional capabilities.

13.7 Limitations of SQL Azure
Although SQL Azure is based on SQL Server, there are some differences and limita-
tions that you’ll need to be aware of. We’ve mentioned some of these in various places
in this chapter, but we’ll try to cover them all in this section.

 The most common reason for any limitation is the services layer that sits on top of
the real SQL Servers and simulates SQL Server to the consumer. This abstraction away
from the physical implementation, or the routing engine itself, is usually the cause.
For example, you can’t use the USE command in any of your scripts. To get around
this limitation, you’ll need to make a separate connection for each different database
you want to connect with. You should assume that each of your databases are on dif-
ferent servers.

Why you can’t use USE

You can’t use the USE command in SQL Azure because the routing layer is stateful,
because the underlying TDS protocol is session-based. When you connect to a server,
a session is created, which then executes your commands. When you connect in SQL
Azure you still have this session, and the fabric routes your commands to the physical
SQL Server that’s hosting the lead replica for your database. If you call the USE com-
mand to connect to a different database, that database may not be on the same phys-
ical server as the database you’re switching from. To avoid this problem, the USE
command isn’t allowed.

312 CHAPTER 13 SQL Azure and relational data
Any T-SQL command that refers to the physical infrastructure is also not supported.
For example, some of the CREATE DATABASE options that can configure which file-
group will be used aren’t supported, because as a SQL Azure user, you don’t know
where the files will be stored, or even how they will be named. Some commands are
outright not supported, like BACKUP.

 You can only connect to SQL Azure over port 1433. You can’t reconfigure the serv-
ers to receive connections over any other port or port range.

 You can use transactions with SQL Azure, but you can’t use distributed transactions,
which are transactions that enroll several different systems into one transaction
update. SQL Azure doesn’t support the network ports that are required to allow this to
happen. Be aware that if you’re using a .NET 2.0 TransactionScope, a normal transac-
tion may be elevated to a distributed transaction in some cases. This will cause an
error, and you won’t know where it’s coming from.

 Each table in your database schema must have a clustered index. Heap tables (a
fancy DBA term for a table without an index) aren’t supported. If you import a table
without a clustered index, you won’t be able to insert records into that table until one
has been created.

 All commands and queries must execute within 5 to 30 minutes. Currently the sys-
tem-wide timeout is 30 minutes. Any request taking longer than that will be cancelled,
and an error code will be returned. This limit might change in the future, as Microsoft
tunes the system to their customers’ needs.

 There are some limitations that are very niche in nature, and more commands are
supported with each new release. Please read the appropriate MSDN documentation
to get the most recent list of SQL Azure limitations.

13.8 Common SQL Azure scenarios
People are using SQL Azure in their applications in two general scenarios: near data
and far data. These terms refer to how far away the code that’s calling into SQL Server
is from the data. If it’s creating the connection over what might be a local network (or
even closer with named pipes or shared memory), that’s a near-data scenario. If the
code opening the connection is anywhere else, that’s a far-data scenario.

13.8.1 Far-data scenarios

The most common far-data scenario is when you’re running your application, perhaps
a web application, in an on-premises data center, but you’re hosting the data in SQL
Azure. You can see this relationship in figure 13.15. This is a good choice if you’re

slowly migrating to the cloud, or if you want to leverage the
amazing high availability and scale SQL Azure has to offer
without spending $250,000 yourself.

Figure 13.15 A web server using SQL Azure in a far-data scenario. The
data is far away from the code that’s using it. In this case, the web server
is on-premises, and the data is in the cloud with SQL Server.SQL Azure Web server

Web client

The internet

313Common SQL Azure scenarios
In a far-data scenario, the client doesn’t have to be a web browser over the internet. It
might be a desktop WPF application in the same building as the web server, or any
other number of scenarios. The one real drawback to far data is the processing time
and latency of not being right next to the data. In data-intensive applications this
would be a critical flaw, whereas in other contexts it’s no big deal.

 Far data works well when the data in the far server doesn’t need to be accessed in
real time. Perhaps you’re offloading your data to the cloud as long-term storage, and
the real processing happens onsite. Or perhaps you’re trying to place the data where
it can easily be accessed by many different types of clients, including mobile public
devices, web clients, desktop clients, and the like.

13.8.2 Near-data scenarios

A near-data scenario would be doing calculations on the
SQL Server directly, or executing a report on the server
directly. The code using the data runs close to the data.
This is why the SQL team added the ability to run managed
code (with CLR support) into the on-premises version of
SQL Server. This feature isn’t yet available in SQL Azure.
Figure 13.16 shows what a near-data scenario looks like.

 One way to convert a far-data application to a near-data
one is to move the part of the application accessing the
code as close to the data server as possible. With SQL Azure,
this means creating a services tier and running that in a
role in Azure. Your clients can still be web browsers, mobile
devices, and PCs, but they will call into this data service to
get the data. This data service will then call into SQL Server. This encapsulates the use
of SQL Azure, and helps you provide an extra layer of logic and security in the mix.

13.8.3 SQL Azure versus Azure Tables

SQL Azure and the Azure Table service have some significant differences, which we’ve
tried to cover in this chapter and the chapters on Azure Tables (chapters 11 and 12).
These differences help make it a little easier to pick between SQL Azure and Azure
Tables, and the deciding factor usually comes down to whether you already have a
database to migrate or not.

 If you do have a local database, and you want to keep using it, use SQL Azure. If
moving it to the cloud would require you to refactor some of the schema to support
partitioning or sharding, you might want to consider some options.

 If size is the issue, that would be the first sign that you might want to consider
Azure Tables. Just make sure the support Tables has for transactions and queries
meets your needs. The size limit surely will be sufficient, at 100 TB.

 If you’re staying with SQL (versus migrating to Azure Tables) and are going to
upgrade your database schema to be able to shard or partition, take a moment to

SQL Azure

Web client

The internet

Azure web role

Figure 13.16 Hosting a data
service in an Azure web role
helps your application be in a
near-data scenario. This
improves the performance of
the application when it comes
to working with the data.

314 CHAPTER 13 SQL Azure and relational data
think about also upgrading it to support multitenant scenarios. If you have several
copies of your database, one for each customer that uses the system, now would be a
good time to add the support needed to run those different customers on one data-
base, but still in an isolated manner.

 If you’re building a new system that doesn’t need sophisticated transactions, or a
complex authorization model, then using Azure Tables is probably best. People tend
to fall into two groups when they think of Tables. They’re either from “ye olde coun-
try” and think of Tables as a simple data-storage facility that’ll only be used for large
lookup tables and flat data, or they’re able to see the amazing power that a flexible
schema model and distributed scale can give them. Looking at Tables without the old
blinders on is challenging. We’ve been beaten over the head with relational databases
for decades, and it’s hard to consider something that deviates from that expected
model. The Windows Azure platform does a good job of providing a platform that
we’re familiar and comfortable with, while at the same time giving us access to the new
paradigms that make the cloud so compelling and powerful.

 The final consideration is cost. You can store a lot of data in Azure Tables for a lot
less money than you can in SQL Azure. SQL Azure gives you a lot more features to use
(joins, relationships, and so on), but it does cost more.

13.9 Summary
SQL Azure is a powerful data platform that’s familiar to us. It just happens to be run-
ning in the cloud. This makes it easier to move an application to the cloud, or to build
something new, using paradigms and tools that we know and love.

 We looked at how to create and manage a database in the cloud. The processes
and approaches are eerily similar to what you would do when working with a local
database, which makes it easy to adopt SQL Azure for your application. There are
some limitations because of the “virtual” nature of the SQL Server, and because the
database is running in a shared environment.

 The sophisticated data engine that is SQL Azure isn’t the last stop for SQL in the
cloud—it’s just the beginning. The tools will be upgraded for full support, and the
rest of the SQL family will move into the cloud over time.

 Although the firewall and other security features make it easier to trust putting
your data in the cloud, you still need to think critically about whether it’s the right
place for your data, or whether a blended approach is best for your scenario.

 Now that you’ve moved your data to the cloud, it’s time to learn more about how
best to query and use data in a cloud application. Chapter 14 will look at this from sev-
eral different angles.

Working with different
types of data
In previous chapters, we’ve shown you what you can do with the Table service, SQL
Azure, and caching. In this chapter, we’ll look at how you can choose when to use
these three technologies. Rather than focusing specifically on the technologies,
we’ll look at the types of data you can store with each of the technologies and at
how each technology will help you store different types of data.

 We’ll look at three types of data in particular: static data, dynamic data, and
infrequently changing data. We’ll also focus on where you can store the data and
how you can efficiently retrieve it.

 We’ll start with static data.

This chapter covers
� Working with static data

� Working with dynamic data

� Working with infrequently changing data
315

316 CHAPTER 14 Working with different types of data
14.1 Static reference data
Every application typically has some sort of frequently accessed static reference data.
This data is usually very small and typically used for data normalization purposes. Let’s
return to the Hawaiian Shirt Shop website and look at an example.

 For each shirt displayed in the Hawaiian Shirt Shop web page, you might wish the
customer to be able to specify the following criteria about the shirt they want to buy:

� Shirt personage type (men, ladies, boys, girls)
� Shirt size type (small, medium, large, extra large)
� Shirt material (cotton, silk, wool)

As you can see, the data listed is fairly static, and it’s applied across all shirts. All shirts
will have a size and a material (admittedly not wool). This data can be considered
static, because it’s unlikely that it would ever be changed once it’s defined. (Hawaiian
shirts are unlikely to suddenly start being made in platinum.)

 Figure 14.1 shows a page of the website
where that data can be selected. The cus-
tomer can browse shirts that are designed
for men or ladies, and for a particular shirt
they can choose the size or material (style).

 As you can see from figure 14.1, the web
page represents the static material (style)
and size data with drop-down lists, whereas
the personage type is represented as a
hyperlink that will perform a search for dif-
ferent shirt types. For now we’ll focus on the
two drop-down lists (material and size).

 The first question you’re probably ask-
ing is, “Where and how do we represent this
data?” Let’s take a look at how this could be
done using each of these technologies:

� SQL Azure
� Table service
� Cache

We’ll start with SQL Azure, as this is probably the most familiar way of representing data.

14.1.1 Representing simple static data in SQL Azure

As you learned in chapter 13, SQL Azure is a relational database, so you would use a
typical relational model to store the data. Figure 14.2 shows a database diagram for
the Hawaiian Shirt Shop website in SQL Azure.

 In figure 14.2 you can see that the data for each of the drop-down lists (size types
and materials) is currently stored in their own tables. As of yet, we haven’t defined any

Figure 14.1 Product detail page of the
Hawaiian Shirt Shop website

317Static reference data
relationships between the static tables and the Shirts table (which is the most central
table in the relationship).

 Now let’s take a look at how you would retrieve data from this database and popu-
late the drop-down lists on the web page.

POPULATING DROP-DOWN LISTS

To populate the materials or size types drop-down list directly from a database, you
can make a standard ADO.NET call to the database (either using ADO.NET directly or
your favorite data-access layer technology, such as Linq2SQL, ADO.NET Entity Frame-
work, or NHibernate).

 The following code shows how you could bind the size drop-down list using
ADO.NET directly:

DataSet ds = new DataSet();
using (SqlConnection conn =
 new SqlConnection(mySqlAzureDBConnectionString))
{
 conn.Open();

 using (SqlDataAdapter da =
 new SqlDataAdapter("SELECT SizeId, SizeName FROM SizeTypes",
 conn))
 {
 da.Fill(ds);
 }
}

sizeDropDown.DataSource = ds.Tables[0];
sizeDropDown.DataTextField= "SizeName";
sizeDropDown.DataValueField = "SizeId";
sizeDropDown.DataBind();

The preceding code shows that you can bind your drop-down lists to a table in SQL
Azure just as easily as you can with a regular SQL Server database.

WARNING The preceding code obviously isn’t up to production standards.
You shouldn’t mix data-access code with presentation-layer code, but it does
illustrate the point.

Figure 14.2 A database with Shirts,
SizeTypes, and Materials tables in SQL
Azure with no relationships defined

318 CHAPTER 14 Working with different types of data
As stated earlier, SQL Azure isn’t the only method of storing static data. Let’s look at
how you could store this data using the Table service.

14.1.2 Representing simple static data in the Table service

Just as easily as each type of static data could be represented in a SQL Azure table, the
data could also be represented as entities in a Table service table. The following C#
class could represent the SizeType entity in the Table service.

public class SizeType : TableServiceEntity
{
 public string SizeCode { get; set; }
 public string Description { get; set; }
}

In this class, the PartitionKey for the SizeType entity isn’t relevant due to the size of
the table, so you could make all entities in the table have the same partition key. You
could use the SizeCode property to represent the RowKey.

NOTE Because the Table service isn’t a relational database and you don’t
need clustered indexes here, you have no need for the SizeTypeId surrogate
key that’s present in the SQL Azure implementation.

The following code represents the data service context class for the SizeTypes table.

public class SizeTypeContext : TableServiceContext
{
 private static CloudStorageAccount storageAccount =
 CloudStorageAccount.FromConfigurationSetting("DataConnectionString");

 public SizeTypeContext()
 : base(storageAccount.TableEndpoint.ToString(),
 storageAccount.Credentials)
 {

 }

 public DataServiceQuery<SizeType> SizeTypeTable
 {
 get
 {
 return CreateQuery<SizeType>("SizeTypeTable");
 }
 }
}

Cost issues with SQL Azure

SQL Azure uses a fixed-price model, and if your database is tied up servicing static
data calls (which always return the same set of data), you may hit the limits of your
database quickly and unnecessarily, requiring you to scale out to meet the demand.
In this situation, caching the data is probably the most cost-effective approach.

319Static reference data
NOTE For a detailed explanation of the context class, refer to chapter 11.

To store a size in the SizeTypeTable table in the Table service, you could use the fol-
lowing code:

var sizeTypeContext = new SizeTypeContext();

var newSizeType = new SizeType
{
 PartitionKey = "SizeTypes",
 RowKey = "Small",
 SizeCode = "S",
 Description = "A shirt for smallish people"
};

sizeTypeContext.AddObject("SizeTypeTable", newSizeType);
sizeTypeContext.SaveChanges();

This code will store the “Small” size entity in the SizeTypeTable table. The method
used to store the data in the table is explained in more detail in chapter 11, which dis-
cusses the Table service.

TIP In this particular example, the SizeTypeTable table will never grow
beyond a few rows, so it’s not worth splitting the table across multiple servers.
Because all the size data will always be returned together, you can store the
data in a single partition called SizeTypes.

Once you have a fully populated SizeTypeTable table, you can bind it to the drop-
down list using the following code:

var sizeTypeContext = new SizeTypeContext ();
sizeDropDown.DataSource = sizeTypeContext.SizeTypeTable;
sizeDropDown.DataTextField = "RowKey";
sizeDropDown.DataValueField = "SizeCode";
sizeDropDown.DataBind();

In this example, the drop-down list is populated directly from the Table service.

We’ve already talked a little about the performance disadvantages of using SQL Azure
or the Table service for accessing static data. Let’s look more closely at why you should
avoid chatty applications in Windows Azure.

Cost issues with the Table service

Because you’re charged for each request that you make to the Table service, reducing
the number of requests will reduce your monthly bill. In a website where you receive
1,000 page views of the Product Details page, this would translate to 4,000 Table
service requests. Based on these figures, your hosting bill could get very costly very
quickly if you follow this model. Caching the data is probably the most efficient thing
to do in this situation.

320 CHAPTER 14 Working with different types of data
14.1.3 Performance disadvantages of a chatty interface

In the previous sections, we’ve discussed how you could store static data, such as shirt
sizes and materials, in SQL Azure or the Table service. We’ll now look at the call
sequences you’d need to make to render the web page (shown previously in figure
14.1) and discuss the pros and cons of each approach.

SYNCHRONOUS CALLS

To retrieve all the data required to display
the product details page shown in figure
14.1, you’d need to make at least four calls
to the storage provider:

� Retrieve the product details
� Retrieve the list of size types
� Retrieve the list of materials
� Retrieve the list of personage types

(men, ladies, and so on)

When developing an ASP.NET web page, you
should consider making asynchronous calls
to improve performance, but most develop-
ers will typically write synchronous calls to retrieve the data. Figure 14.3 shows the syn-
chronous call sequence for the product details web page.

 As you can see, the synchronous nature of the page means you have to wait until you
receive data back from the data provider (SQL Azure or the Table service) before you
can process the next section of the page. Due to the blocking nature of synchronous
calls and the latency involved in cross-server communication, the rendering of this page
will be much slower than it needs to be.

ASYNCHRONOUS CALLS

Because size types, materials, and personage
types are sets of data that are both indepen-
dent of each other and independent of the
returned product details, you could use asyn-
chronous calls instead. Retrieving the data
from the Table service asynchronously means
you don’t have to wait for one set of data to
be returned before retrieving the next set.

 Figure 14.4 shows the same call sequence
as in figure 14.3, but this time using asyn-
chronous calls.

 As you can see in figure 14.4, you no longer have to wait for data to be returned
before you process the next statement. Once all the data is returned, you can render
the page.

ASP.NET web app Data provider

Get size types

Get product details

Get materials

Get personage types

Render page

Figure 14.3 Synchronous call sequence;
each result must be returned before you can
make the next call

Data providerASP.NET web app

Get size types

Get product details

Get materials

Get personage types

Render page

Figure 14.4 Asynchronous call sequence

321Static reference data
TIP Here we’ve used static data calls as our example. You can, however, use
asynchronous calls whenever you don’t have any relationship between sets of
data rendered on a page.

Now that you understand how you can store and retrieve static data, let’s take a look at
how you can improve performance (and reduce the hosting bill) by using cached data
instead.

14.1.4 Caching static data

Regardless of your chosen storage platform (SQL Azure or the Table service), you
should consider caching static data rather than continually retrieving the same data
from a table. This will bring large performance and cost benefits.

 Because static reference data hardly ever changes and is usually a pretty small set of
data, the in-process memory cache (such as the default ASP.NET cache) is a suitable
caching choice. You can always use a cache dependency to keep the cache and the
underlying backing store synchronized. For more details on how to set up an in-process
cache, refer to chapter 6.

 Let’s now take a look at how you can use the cache in the Hawaiian Shirt Shop website.

POPULATING THE CACHE

For frequently accessed static data, you should probably populate the web role cache
when the application starts up. The following code, placed in the Global.asax file, will
do this:

protected void Application_Start(object sender, EventArgs e)
{
 var sizeTypeContext = new SizeTypeContext();
 HttpRuntime.Cache["sizeTypes"] = sizeTypeContext.SizeTypeTable;
}

In this example we’ve populated the cache with data from the Table service, but the
technique is the same for using SQL Azure. We’re using a cache because we’re working
with static data, and we don’t want to hit the data source too often. You might want to
consider populating the caching when your role instance starts, instead of when the
ASP.NET application starts.

POPULATING THE DROP-DOWN LISTS

Now that you have your data in the cache, let’s take a look at how you can populate
the drop-down lists with that data:

sizeDropDown.DataSource = (IEnumerable<SizeType>)Cache["sizeTypes"];
sizeDropDown.DataTextField = "RowKey";
sizeDropDown.DataValueField = "SizeCode";
sizeDropDown.DataBind();

As you can see from this code, you no longer need to return to the data store to popu-
late the drop-down list—you can use the cache directly.

322 CHAPTER 14 Working with different types of data
 Because the cache will be scavenged when memory is scarce, you can give static
data higher priority than other cache items by using the cache priority mechanism
(meaning that other items will be scavenged first):

var sizeTypeContext = new SizeTypeContext();
HttpContext.Current.Cache.Insert("sizeTypes",
➥ sizeTypeContext.SizeTypeTable, null, new DateTime(2019, 1, 1),
➥ Cache.NoSlidingExpiration, CacheItemPriority.High, null);

In the preceding code, the SizeTypes list will be stored in the cache with a High prior-
ity, and it will have an absolute expiration date of January 1, 2019. If the web role is
restarted, the cache will be flushed, but if the process remains running, the data
should remain in memory until that date.

 If the static data might change in the future, you can set a cache dependency to
keep the cache synchronized or manually restart the role when updating the data.

PROTECTING YOUR CODE FROM AN EMPTY CACHE

Because cache data is volatile, you might wish to prevent the cached data from being
flushed by checking that the data is cached prior to populating the drop-down list:

private IEnumerable<SizeType> GetSizeTypes()
{
 if (Cache["sizeTypes"] == null)
 {
 var sizeTypeContext = new SizeTypeContext();
 Cache["sizeTypes"] = sizeTypeContext.SizeTypeTable;
 }

 return (IEnumberable<SizeType>)Cache["sizeTypes"];
}

sizeDropDown.DataSource = GetSizeTypes();
sizeDropDown.DataTextField = "RowKey";
sizeDropDown.DataValueField = "SizeCode";
sizeDropDown.DataBind();

In this code, before the drop-down list is populated, a check is run to make sure that
the data is already stored in the cache. If the data isn’t held in cache, it repopulates
that cache item.

 By effectively caching static data, you can both reduce your hosting bill and
improve the performance of your application. By using an in-memory cache for static
data on the product details page, you now have one data storage call per application
start up rather than four.

 Using in-memory cache for static data also means that your presentation layer no
longer needs to consider where the underlying data is stored.

 Please be aware that the examples in this section aren’t production-level code and
have been simplified to illustrate the concepts. If you’re implementing such a solu-
tion, you should also take the following guidelines into consideration:

� Abstract your caching code into a separate caching layer
� Don’t use magic strings (such as Cache["sizeTypes"])—use constants instead
� Use cache dependencies

323Storing static reference data with dynamic data
� Prioritize your cache properly
� Check that your cache is populated prior to returning data
� Handle exceptions effectively

14.2 Storing static reference data with dynamic data
In the previous section, we looked at how you could represent static data for the pur-
poses of data retrieval. This is only one side of the picture, because typically you’ll
want to associate the static data with some dynamic data.

 For example, people viewing the product details web page shown in figure 14.1 will
hopefully purchase the shirt displayed. When they do, how should you store that data
so that you can easily retrieve it?

 Depending on the implementation of the web page, you can either allow the user
to purchase the item directly or add the item to a shopping cart. In either case, the
method of storing the data will be the same, so let’s look at storing items in a shop-
ping cart.

14.2.1 Representing the shopping cart in SQL Azure

You’re probably familiar with rela-
tional databases, so we’ll first look at
how you can store shopping cart data
in SQL Azure. (We’ll look at using the
Table service in section 14.2.3).

THE SHOPPING CART DATA MODEL

The shopping cart can be persisted
across sessions, and if the user is a
registered logged-in user, you can
associate this account with their user
ID. Figure 14.5 represents a typical
data model for a shopping cart.

 In figure 14.5, the shopping cart
is represented as two tables (Shop-
pingCart and ShoppingCartItems).
The ShoppingCart table represents
the shopping cart for each user, and
each item in the shopping cart is
stored in the ShoppingCartItems table. For each item in the cart, the ShirtId, Materi-
alId, and SizeId are stored, and the appropriate foreign-key relationships between
tables are established.

 If the website user is a registered user, the UserId would be stored in the Shopping-
Cart table; if the user is unregistered, you could use the session ID.

NOTE Although this data model represents a shopping cart, you could model
an orders table using the same data structure.

Figure 14.5 Data model for a shopping cart

324 CHAPTER 14 Working with different types of data
RETRIEVING THE DATA

Because SQL Azure is a relational database, you could query across multiple tables by
using JOIN clauses in your SQL statements, if required. For example, to return all
items in the shopping cart for UserId 12345, including the shirt name, size, and mate-
rial, you could issue the following SQL query:

SELECT sci.ShoppingCartItemId,
 s.ShirtName,
 s.Description,
 s.Price,
 sz.SizeId,
 sz.SizeName,
 m.MaterialId,
 m.MaterialName
FROM ShoppingCart sc
JOIN ShoppingCartItems sci ON sci.ShoppingCartId = sc.ShoppingCartId
JOIN Shirts s ON s.ShirtId = sci.ShirtId
JOIN SizeTypes sz ON sz.SizeId = sci.SizeId
JOIN Materials m ON m.MaterialId = sci.MaterialId
WHERE sc.UserId = '12345'

Because the shopping cart table will never hold a large amount of data, and the static
data is held in an in-memory cache, there’s no need to return the static data as part of
your SQL query. You can, therefore, use the following query instead:

SELECT sci.ShoppingCartItemId,
 s.ShirtName,
 s.Description,
 s.Price,
 sci.SizeId,
 sci.MaterialId,
FROM ShoppingCart sc
JOIN ShoppingCartItems sci
 ON sci.ShoppingCartId = sc.ShoppingCartId
JOIN Shirts s ON s.ShirtId = sci.ShirtId
WHERE sc.UserId = '12345'

Not returning the static data (SizeTypes and Materials) both improves the perfor-
mance and reduces the complexity of the query by reducing the number of joins.

 Once the data is returned from the database, you can combine it with the in-memory
cached data using LINQ to Objects.

NOTE This strategy is perfectly acceptable when dealing with static reference
data because the cached data tends to be very small. This would not be an
acceptable strategy when dealing with millions of rows of data.

14.2.2 Partitioning the SQL Azure shopping cart

The data model in figure 14.5 looks like it’s only usable for single-server databases, but
this isn’t strictly the case. That model will easily scale out, as we’ll explain in a second.

 One of the issues with using SQL Azure is that currently there’s no built-in method
of partitioning data across multiple servers. To avoid bottlenecking your application

325Storing static reference data with dynamic data
on a single database, you need to partition (or shard) your data across multiple serv-
ers in your application layer. In chapter 13, we spent a little time talking about shard-
ing, but here we’ll look at how to apply it in relation to the Hawaiian Shirt Shop.

SPLITTING THE DATA MODEL ACROSS MULTIPLE SERVERS

As we said, the data model in figure 14.5 will work across multiple servers—you just
have to be a little smart about how you do this. Because the shopping cart tables have
no dependencies on any other part of the application, you can separate those tables
into their own separate database.

 In the application layer, you could therefore separate the shopping cart’s data-access
layer methods and connection strings into their own layer. By keeping the functionality
logically separated, you can split your application across multiple databases if required.
In the Hawaiian Shirt Shop example, you could easily maintain separate databases for
the shopping cart, orders, customers, products, and static data, if required.

PARTITIONING DATA FURTHER

In your web application, you might get to the point where the shopping cart database
is bottlenecking and you need to partition the data further. This isn’t as difficult as it
sounds.

 Because the shopping cart data is only used by a single user and you never query
across multiple users, you can easily partition out the data by user. For example, you
might have 100,000 registered users who maintain a shopping cart. If you currently
have a single database and wish to split it into two or more databases, you could use a
partitioning function in your application:

If (userId.ToString()[0] < 'N')
{
 // Use Connection String for Database 1
}
else
{
 // Use Connection String for Database 2
}

In the preceding example, if the first character of the userId begins with N or later,
they would use the second shopping cart database; otherwise, they’d use the first data-
base. You could break this down into further partitions if required.

All those databases—isn’t that expensive?

The good news about this type of design is that you can still start with a single SQL
Azure database when your application has a small number of users. As the traffic in-
creases, you can then split the shopping cart tables into their own separate database
when needed. To split out your databases, you could simply create a new SQL Azure
database, migrate the shopping cart data across, and then change the connection
string for the shopping cart’s data layer.

326 CHAPTER 14 Working with different types of data
 As stated earlier, this type of partitioning can only be done in the application layer
at present. It’s planned that in future releases of SQL Azure there’ll be some partition-
ing built-in on the server side.

In this example, we’ve looked at how you can use SQL Azure with Windows Azure
when storing dynamic data with static data (and partitioning where necessary). We’ve
purposely not looked at how this works with large sets of infrequently changing data
because we’ll look at this in section 14.3 of this chapter.

 Let’s transition over to how we would implement the same concept, but using the
Azure Table service instead.

14.2.3 Representing the shopping cart’s static data in the Table service

In the previous section, we looked at how you could store the shopping cart in SQL
Azure and how you could scale it out horizontally if necessary. Although it’s possible to
scale out a SQL Azure database, it still requires you to add some manual partitioning

Maintaining referential integrity

One of the issues with splitting data across multiple servers is keeping referential
integrity.

In the shopping cart example, the data that the shopping cart is referencing is either
static (size types, materials, or personage types) or infrequently changing (and ad-
ministratively controlled), so referential integrity isn’t such a big deal. You’re ultimately
controlling the data, so you can break foreign-key relationships and store the various
tables on separate servers.

If you do need to maintain referential integrity, you could keep a copy of the static
data on each instance of the database. Although there is data duplication, there’s
such a small amount of data that you can easily fix the problem by synchronizing the
databases. In this case, you’d generally keep one master database allowing one-way
synchronization.

In the shopping cart example, because there’s no need to query across multiple tables
(beyond the cache), you can safely break referential integrity.

Querying across partitions

Unfortunately there is no way of efficiently querying across multiple databases in the
current implementation of SQL Azure, which is why you can only partition functionally
independent data.

If you need to query across partitions when reporting (such as when reporting on all
customer orders in the past week), you can always export data from your SQL Azure
real-time database to a large reporting database (outside of Windows Azure) where
you can make use of a full-blown version of SQL Server with BI capabilities.

327Storing static reference data with dynamic data
code at the application layer. We’ll now look at how you could represent the shopping
cart table in the Table service, and at how you can use the built-in partitioning model
to scale out your tables.

 Due to the architecture of the Table service, there’s no facility to perform a server-
side join between a Shirts table and the ShoppingCart table. This effectively leaves you
two options when you have data that resides on two different tables:

� Duplicate the data
� Join the data on the client side

For now, we’ll ignore the duplicate data option (we’ll cover that in the next section),
and we’ll focus on client-side data joining. But before we look at joining the data on
the client side, let’s take a peek at how you could represent the ShoppingCart table in
the Table service.

SHOPPINGCART ENTITY

In the SQL Azure implementation of our shopping cart data model, there were two
tables (ShoppingCart and ShoppingCartItems). Because the Table service isn’t a rela-
tional database and doesn’t support joining between tables, you can represent the
shopping cart as a single table (ShoppingCart). Within the ShoppingCart table you
can store the entity as follows:

public class ShoppingCartItem : TableServiceEntity
{
 public string Shirt {get;set;}
 public string Material { get; set; }
 public string Size { get; set; }
}

Consider the definition of the ShoppingCartItem entity. Because both the material
and size data are cached in memory, you can simply store a reference to the data (the
row key for the material and size) and then perform a client-side join between the
shopping cart entity and the cached versions of the Material and SizeType entities.
Because the cached data is a small set of static reference data, and it’s being joined to
a small set of shopping cart data, this technique is appropriate.

Partitioning with the Table service

Unlike SQL Azure, partitioning the Table service implementation of the shopping cart
is pretty simple. All you need to do is set a reasonable value for the partition key for
the shopping cart table, and the Windows Azure Table service will take care of the rest.

In this case, you’ll only be retrieving the shopping cart items for one user at a time,
so it would make sense to partition the data by UserId. By setting the PartitionKey
as the UserId, the data can be physically partitioned to as many servers as necessary,
and the data for a single user’s shopping cart will always physically reside together.

For more details on how Table service partitioning works, refer back to chapter 11.

328 CHAPTER 14 Working with different types of data
To join these two sets of data, you can define a new entity that will represent a strong
version of your shopping cart item, as follows:

public class StrongShoppingCartItem
{
 public Shirt SelectedShirt { get; set; }
 public SizeType Size { get; set; }
 public Material Material { get; set; }
}

As you can see, this code represents the shopping cart item with a reference to each
entity rather than the using an ID reference.

 Now that you have the stronger version of the entity, you need to populate it, like this:

var materials = (IEnumerable<Material>)Cache["materials"];
var sizeTypes = (IEnumerable<SizeType>)Cache["sizeTypes"];

var shoppingCartItemContext = new ShoppingCartItemContext ();
var shoppingCartItems =
 shoppingCartItemContext.ShoppingCartItem.ToList();

var q = from shoppingCartItem in shoppingCartItems
 join sizeType in sizeTypes
 on shoppingCartItem.Size.RowKey equals sizeType.RowKey
 join material in materials
 on shoppingCartItem.Material.RowKey equals material.RowKey
 select new StrongShoppingCartItem
 {
 SelectedShirt = new Shirt(),
 Material = material,
 Size = sizeType
 };

The cool thing about the preceding query is that because the size type and materials
are cached, you don’t need to make any extra table service calls to get the reference
data. This is all performed in-memory using LINQ to Objects.

WARNING This technique is super cool for small datasets. Make sure you
check your performance on large datasets, such as when you have millions of
rows, because it may not meet your needs.

In-memory joins for static data save money

Not only will in-memory joins improve the performance of your application, they’ll save
you lots of cash. The fewer calls you make to the Table service or SQL Azure, the more
money you’ll save.

With the Table service, you save money directly by making fewer requests; with SQL
Azure, you save money indirectly by requiring fewer SQL databases to service your
queries.

329Joining dynamic and infrequently changing data together
The previous example improved performance and saved money by joining static data.
Although this works well for static data, it doesn’t work so well for nonstatic
data—dynamic data or infrequently changing data.

14.3 Joining dynamic and infrequently changing data together
In this section we’ll look at the options we have for joining dynamic and infrequently
changing data.

 In the previous example, we skipped over how you’d represent your shirt in the
shopping cart. You have two choices: perform a client-side join (as you did in the pre-
vious section with the static data) or duplicate the data. In this section we’ll look at
how you can duplicate data, and join uncached data.

 Let’s first look at how we can duplicate data.

14.3.1 Duplicating data instead of joining

Because the shirt data isn’t static data but is infrequently changing data, you need to
find a different way of associating that data with the dynamic shopping cart item. For
this example, you can duplicate the shirt data within the shopping cart item, as shown
here:

public class ShoppingCartItem : TableServiceEntity
{
 public string ShirtName { get; set; }
 public string ShirtDescription { get; set; }
 public int Price { get; set; }
 public Material Material { get; set; }
 public SizeType Size { get; set; }
}

The preceding code stores a complete copy of the selected shirt as part of the shop-
ping cart item’s entity.

NOTE This approach will mean that we won’t need to perform a join with the
Shirts table, but it does mean that our table will be much larger than a tradi-
tional relational table, meaning higher storage costs.

Now that you have your shopping cart item, you need to correctly display your
StrongShoppingCartItem object. The following code shows how you could modify the
earlier query (from section 14.2.3) to do this.

select new StrongShoppingCartItem
 {
 SelectedShirt = new Shirt {PartitionKey="Shirts",
 RowKey=shoppingCartItem.ShirtName,
 Description=shoppingCartItem.ShirtDescription,
 Price=shoppingCartItem.Price},
 Material = material,
 Size = sizeType
 };

330 CHAPTER 14 Working with different types of data
As you can see from the preceding code, you can project the duplicate data into the
StrongShoppingCartItem object by instantiating a new Shirt object with the data
from the ShoppingCartItem.

14.3.2 Client-side joining of uncached data

If data synchronization is a big concern and your dynamic data is a very small set of
data, you could take the hit of performing a client-side join. To do that, you’d need to
modify the ShoppingCartItem to support the join:

public class ShoppingCartItem : TableServiceEntity
{
 public Shirt Shirt {get;set;}
 public Material Material { get; set; }
 public SizeType Size { get; set; }
}

In the preceding code, the duplicate shirt properties have been replaced with a refer-
ence to the shirt.

 Now that the entity stores a reference, you need to modify your query to join the
data together. The following code shows how you could do this:

var materials = (IEnumerable<Material>)Cache["materials"];
var sizeTypes = (IEnumerable<SizeType>)Cache["sizeTypes"];

var shoppingCartItemContext = new ShoppingCartItemContext ();
var shoppingCartItems =
 shoppingCartItemContext.ShoppingCartItem.ToList();

var shirtsContext = new ShirtContext();

var q = from shoppingCartItem in shoppingCartItems
 join sizeType in sizeTypes
 on shoppingCartItem.Size.RowKey equals sizeType.RowKey
 join material in materials
 on shoppingCartItem.Material.RowKey equals material.RowKey

Data synchronization

Apart from it taking up more space, another issue with duplicating data is data syn-
chronization.

Although the shirt data is infrequently changed, when a change does occur (such as
the price), all items that are present in a customer’s shopping basket won’t be auto-
matically updated with the new price. If your business model allows you to have stale
data, this is obviously not a problem. But if your pesky customers want the correct
price to be reflected in the shopping basket, you’ll need some method of synchronizing
the master table to all the duplicates.

A simple method of keeping the data synchronized is to publish a message to a queue,
stating that an item has changed. Then you can have a worker role pick up that mes-
sage and update all items in the table with the correct data.

331Summary
 select new ShoppingCartItem
 {
 SelectedShirt = (from shirt in shirtsContext.ShirtTable
 where shirt.PartitionKey=="Shirts" &&
 shirt.RowKey ==
 shoppingCartItem
 .SelectedShirt.RowKey
 select shirt).First(),
 Material = material,
 Size = sizeType
 };

The key thing to note about the preceding example is that the shirt query isn’t
cached, and it will invoke a call to the Table service for each item returned. The fol-
lowing extract shows where this is performed:

SelectedShirt = (from shirt in shirtsContext.ShirtTable
 where shirt.PartitionKey=="Shirts" &&
 shirt.RowKey == shoppingCartItem.SelectedShirt.RowKey
 select shirt).First(),

Because the data returned from the shopping cart is small, this is a pretty useful tech-
nique. If you were dealing with a much larger set of shopping cart data (such as hun-
dreds of items), this would start to perform badly.

TIP If you’re working with infrequently changing data (such as the shirt
data), you may wish to consider using SQLite to host a local cached version of
your data. This would allow you to perform SQL queries on local cached data
without calling out to the Table service or SQL Azure.

Not having the ability to join data across tables does present challenges, but not always
impossible ones. For the most part, you can use different techniques to get around
those limitations. But in some circumstances it’s going to be impossible to use the
Table service. If you have lots of dynamic data and need to perform live queries across
various table joins, you’re not going to be able to represent that easily in the Table ser-
vice. In these instances, SQL Azure is the most appropriate choice. Similarly, if you
need to perform transactions across various tables, SQL Azure is again the right choice.

14.4 Summary
In this chapter, we’ve tried to break away from automatically building pure relational
database solutions and instead tried to build hybrid solutions that offer the benefits of
both platforms.

Lucene.NET

If you’re storing your data in SQL Azure or the Table service and you need to perform
text searches, you can export your data out of these databases and perform searches
with Lucene.NET: http://lucene.apache.org/lucene.net/.

332 CHAPTER 14 Working with different types of data
 You’ve seen that by breaking foreign-key constraints, you can make effective use of
the cache to store your static data, allowing you to use either the Table service or SQL
Azure as your underlying storage platform.

 You’ve also seen that if you choose to make use of the Table service (which is much
more scalable than SQL Azure), you can easily join your dynamic data back to your
static reference data without financial or performance penalties.

 Although SQL Azure isn’t as naturally scalable as the Table service, we looked at
how you can shard SQL Azure to build a highly scalable relational database solution.

 Finally we saw that when it comes to infrequently changing reference data (such as
the shirt data), what you want to do with that data should influence what technologies
you choose. In some circumstances, such as live fresh data, transactional data, or data
with many joins across dynamic tables, SQL Azure is the only choice. But if you’re look-
ing to join dynamic data with infrequently changing data, you can still use the Table ser-
vice by thinking about your queries and your performance. Take time to work out how
your queries should be structured, consider how many round trips will be made, and
think about how wasteful some of your “smaller” queries might be. REST is easy to use,
but there can be overhead costs because small queries become chatty over the network.

 Think about what your application needs to do before you choose a technology.
Don’t automatically reach for SQL Azure (which is awesome); consider whether the
Table service will meet your needs.

 Now that you’ve moved your data to the cloud, it’s time to think about how to accom-
plish the complex backend processing usually associated with relational databases.

Part 6

Doing work with messages

Part 6, the last leg of this journey, covers several advanced topics.
 Chapter 15 discusses worker roles. We covered web roles early in the book;

most of that also applies to worker roles. This chapter covers some aspects of
worker roles, focusing on how they’re different from web roles. We also discuss
some more advanced topics we saved for the back of the book so you would get
to them when you were good and ready.

 Chapter 16 covers the last part of Azure storage: queues. We’ll look at how
you can use queues to decouple your system and peek at some advanced pat-
terns for queues.

 Chapter 17 looks at the grandly titled Windows Azure platform AppFabric
services. The Access Control Service (ACS) and the Service Bus help you con-
nect to and protect the services you’re running in Azure (or, really, that you’re
running anywhere).

 The final chapter, chapter 18 for those keeping count, focuses on how to use
the service management API to watch and control your Azure environment. If
you want to gather logs and diagnostics, head to this chapter.

 That’s it, that’s the end of the book. You can now put Cloud Surfer on your
resume and retire with fame and wealth.

Processing with
worker roles
In Azure there are two roles that run your code. The first, the web role, has already
been discussed. It plays the role of the web server, communicating with the outside
world. The second role is the worker role. Worker roles act as backend servers—you
might use one to run asynchronous or long-running tasks. Worker roles are usually
message based and will usually receive these messages by polling a queue or some
other shared storage. Like web roles, you can have multiple deployments of code
running in different worker roles. Each deployment can have as many instances as
you would like running your code (within your Azure subscription limits).

 It’s important to remember that a worker role is a template for a server in your
application. The service model for your application defines how many instances of

This chapter covers
� Scaling the backend

� Processing messages

� Using the service management APIs to control
your application
335

336 CHAPTER 15 Processing with worker roles
that role need to be started in the cloud. The role definition is similar to a class defini-
tion, and the instances are like objects.

 If your system has Windows services or batch jobs, they can easily be ported to a
worker role. For example, many systems have a series of regularly scheduled backend
tasks. These might process all the new orders each night at 11 p.m. Or perhaps you
have a positive pay system for banking, and it needs to connect to your bank each day
before 3 p.m., except for banking holidays.

 The worker role is intended to be started up and left running to process messages.
You’ll likely want to dynamically increase and decrease the number of instances of
your worker role to meet the demand on your system, as it increases and decreases
throughout your business cycle.

 When you create worker roles, you’ll want to keep in mind that Windows Azure
doesn’t have a job scheduler facility, so you might need to build your own. You could
easily build a scheduling worker role that polls a table representing the schedule of
work to do. As jobs need to be executed, it could create the appropriate worker
instance, pass it a job’s instructions, and then shut down the instance when the work is
completed. You could easily do this with the service management APIs, which are dis-
cussed in chapter 18.

 We’re going to start off by building a simple service using a worker role. Once we
have done that we’ll change it several times, to show you the options you have in com-
municating with your worker role instances.

15.1 A simple worker role service
When it’s all said and done, working with worker roles is quite easy. The core of the
code for the worker role is the normal business code that gets the work done. There
isn’t anything special about this part of a worker role. It’s the wrapper or handler
around the business code that’s interesting. There are also some key concepts you’ll
want to pay attention to, in order to build a reliable and manageable worker role.

 In this section, we’ll show you how to build a basic worker role service. You have to
have some way to communicate with the worker role, so we’ll first send messages to
the worker through a queue, showing you how to poll a queue. (We won’t go too deep
into queues, because they’re covered thoroughly in chapter 16.) We’ll then upgrade
the service so you can use inter-role communication to send messages to your service.

 We’ll use the term service fairly loosely when we’re talking about worker roles. We
see worker roles as providing a service to the rest of the application, hopefully in a
decoupled way. We don’t necessarily mean to imply the use of WS-* and Web Service
protocols, although that’s one way to communicate with the role.

 Let’s roll up our sleeves and come up with a service that does something a little
more than return a string saying “Hello World.” In the next few sections, we’ll build a
new service from scratch.

337A simple worker role service
15.1.1 No more Hello World

Because Hello World doesn’t really cut it as an example this late in any book, we’re
going to build a service that reverses strings. This is an important service in any busi-
ness application, and the string-reversal industry is highly competitive.

 There will be two parts to this service. The first part will be the code that actually
does the work of reversing strings—although it’s composed of some unique intellec-
tual property, it isn’t very important in our example. This is the business end of the ser-
vice. The other part of the service gets the messages (requests for work) into the
service. This second part can take many shapes, and which design you use comes down
to the architectural model you want to support. Some workers never receive messages;
they just constantly poll a database, or filesystem, and process what they find.

 To build this string-reversal service you need to open up Visual Studio 2010 and
start a new cloud project. For this project, add one worker role, and give it the name
Worker-Process String, as shown in figure 15.1.

 At the business end will be our proprietary and award-winning algorithm for
reversing strings. We intend to take the string-reversal industry by storm and really
upset some industry captains. The core method will be called ReverseString, and it
will take a string as its only parameter. You can find the secret sauce in the following
listing. Careful, don’t post it on a blog or anything.

private string ReverseString(string originalString)
{
 int lengthOfString = originalString.Length;
 char[]reversedBuffer = new char[lengthOfString];

 for (int i = 0; i < lengthOfString; i++)

Listing 15.1 The magical string-reversal method

Figure 15.1 To build the
service, you’ll start with
a worker role. It’ll do all
of the work and make it
easy to scale as your
business grows, especially
during the string-reversal
peak season.

338 CHAPTER 15 Processing with worker roles
 {
 reversedBuffer [i] = originalString[lengthOfString - 1 - i];
 }

 return new string(reversedBuffer);
}

The code in the previous listing is fairly simple—it’s normal .NET code that you could
write on any platform that supports .NET (mobile, desktop, on-premises servers, and
so on), not just for the cloud. The method declares a character array to be a buffer
that’s the same length as the original string (because our R&D department has discov-
ered that every reversed string is exactly as long as the original string). It then loops
over the string, taking characters off the end of the original string and putting them at
the front of the buffer, moving along the string and the buffer in opposite directions.
Finally, the string in the buffer is returned to the caller.

 For this example, we’ll put this business logic right in the WorkerRole.cs class.
Normally this code would be contained in its own class, and would be referenced into
the application. You can do that later if you want, but we want to keep the example
simple so you can focus on what’s important.

 We’ve chosen to put this service in a worker in the cloud so that we can dynami-
cally scale how many servers we have running the service, based on usage and
demand. We don’t want to distract our fledgling company from writing the next gen-
eration of string-reversal software with the details and costs of running servers.

 If you ran this project right now, you wouldn’t see anything happen. The cloud
simulator on your desktop would start up, and the worker role would be instantiated,
but nothing would get done. By default, the worker service comes with an infinite
polling loop in the Run method. This Run method is what is called once the role
instance is initialized and is ready to run. We like that they called it Run, but calling it
DoIt would have been funnier.

 Now that you have your code in the worker role, how do you access it and use it?
The next section will focus on the two primary ways you can send messages to a worker
role instance in an active way.

15.2 Communicating with a worker role
Worker roles can receive the messages they need to process in either a push or a pull
way. Pushing a message to the worker instance is an active approach, where you’re
directly giving it work to do. The alternative is to have the role instances call out to
some shared source to gather work to do, in a sense pulling in the messages they
need. When pulling messages in, remember that there will possibly be several
instances pulling in work. You’ll need a mechanism similar to what the Azure Queue
service provides to avoid conflicts between the different worker role instances that are
trying to process the same work.

 Keep in mind the difference between roles and role instances, which we covered
earlier. Although it’s sometimes convenient to think of workers as a single entity, they

339Communicating with a worker role
don’t run as a role when they’re running, but as one or more instances of that role.
When you’re designing and developing your worker roles, keep this duality in mind.
Think of the role as a unit of deployment and management, and the role instance as
the unit of work assignment. This will help reduce the number of problems in your
architecture.

 One advantage that worker roles have over web roles is that they can have as many
service endpoints as they like, using almost any transport protocol and port. Web roles
are limited to HTTP/S and can have two endpoints at most. We’ll use the worker role’s
flexibility to provide several ways to send it messages.

 We’ll cover three approaches to sending messages to a worker role instance:

� A pull model, where each worker role instance polls a queue for work to be
completed

� A push model, where a producer outside Azure sends messages to the worker
role instance

� A push model, where a producer inside the Azure application sends messages
to the worker role instance

Let’s look first at the pull model.

15.2.1 Consuming messages from a queue

The most common way for a worker role to receive messages is through a queue. This
will be covered in depth in chapter 16 (which is on messaging with the queue), but
we’ll cover it briefly here.

 The general model is to have a while loop that never quits. This approach is so
common that the standard worker role template in Visual Studio provides one for
you. The role instance tries to get a new message from the queue it’s polling on each
iteration of the loop. If it gets a message, it’ll process the message. If it doesn’t, it’ll
wait a period of time (perhaps 5 seconds) and then poll the queue again.

 The core of the loop calls the business code. Once the loop has a message, it passes
the message off to the code that does the work. Once that work is done, the message is
deleted from the queue, and the loop polls the queue again.

while (true)
{
 CloudQueueMessage msg = queue.GetMessage();
 if (msg != null)
 {
 DoWorkHere(msg);
 queue.DeleteMessage(msg);
 }
 else
 {
 Thread.Sleep(5000);
 }
}

340 CHAPTER 15 Processing with worker roles
You might jump to the conclusion that you could easily poll an Azure Table for work
instead of polling a queue. Perhaps you have a property in your table called Status
that defaults to new. The worker role could poll the table, looking for all entities whose
Status property equals new. Once a list is returned, the worker could process each
entity and set their Status to complete. At its base, this sounds like a simple approach.

 Unfortunately, this approach is a red herring. It suffers from some severe draw-
backs that you might not find until you’re in testing or production because they won’t
show up until you have multiple instances of your role running.

 The first problem is of concurrency. If you have multiple instances of your worker
role polling a table, they could each retrieve the same entities in their queries. This
would result in those entities being processed multiple times, possibly leading to sta-
tus updates getting entangled. This is the exact concurrency problem the Azure
Queue service was designed to avoid.

 The other, more important, issue is one of recoverability and durability. You want
your system to be able to recover if there’s a problem processing a particular entity.
Perhaps you have each worker role set the status property to the name of the
instance to track that the entity is being worked on by a particular instance. When the
work is completed, the instance would then set the status property to done. On the
surface, this approach seems to make sense. The flaw is that when an instance fails
during processing (which will happen), the entity will never be recovered and pro-
cessed. It’ll remain flagged with the instance name of the worker processing the item,
so it’ll never be cleared and will never be picked up in the query of the table to be pro-
cessed. It will, in effect, be “hung.” The system administrator would have to go in and
manually reset the status property back to new. There isn’t a way for the entity to be
recovered from a failure and be reassigned to another instance.

 It would take a fair amount of code to overcome the issues of polling a table by mul-
tiple consumers, and in the end you’d end up having built the same thing as the Azure
Queue service. The Queue service is designed to play this role, and it removes the need
to write all of this dirty plumbing code. The Queue service provides a way for work to
be distributed among multiple worker instances, and to easily recover that work if the
instance fails. A key concept of cloud architecture is to design for failure recoverability
in an application. It’s to be expected that nodes go down (for one reason or another)
and will be restarted and recovered, possibly on a completely different server.

 Queues are the easiest way to get messages into a worker role, and they’ll be dis-
cussed in detail in the next chapter. Now, though, we’ll discuss inter-role communica-
tion, which lets a worker role receive a message from outside of Azure.

15.2.2 Exposing a service to the outside world

Web roles are built to receive traffic from outside of Azure. Their whole point in life is
to receive messages from the internet (usually from a browser) and respond with
some message (usually HTML). The great thing is that when you have multiple web
role instances, they’re automatically enrolled in a load balancer. This load balancer
automatically distributes the load across the different instances you have running.

341Communicating with a worker role
Worker roles can do much the same thing, but because you aren’t running in IIS
(which isn’t available on a worker role), you have to host the service yourself. The only
real option is to build the service as a WCF service.

 Our goal is to convert our little string-reversal method into a WCF service, and then
expose that externally so that customers can call the service. The first step is to remove
the loop that polls the queue and put in some service plumbing. When you host a ser-
vice in a worker role, regardless of whether it is for external or internal use, you need
to declare an endpoint. How you configure this endpoint will determine whether it
allows traffic from sources internal or external to the application. The two types of
endpoints are shown in figure 15.2. If it’s configured to run externally, it will use the
Azure load balancers and distribute service calls across all of the role instances run-
ning the server, much like how the web role does this. We’ll look at internal service
endpoints in the next section.

 The next step in the process is to define the endpoint. You can do this the macho
way in the configuration of the role, or you can do it in the Visual Studio Properties
window. If you right-click on the Worker-Process String worker role in the Azure proj-
ect and choose Properties, you’ll see the window in figure 15.3.

Internet

Service Service Service

Service Service Service

Worker role 0, instance 0 Worker role 0, instance 1 Worker role 0, instance 2

Worker role 1, instance 0 Worker role 1, instance 1 Worker role 1, instance 2

Load balancer

Figure 15.2 Worker roles have
two ways of exposing their
services. The first is as an input
service—these are published to
the load balancer and are
available externally (role 0). The
second is as an internal service,
which isn’t behind a load
balancer and is only visible to
your other role instances (role 1).

Figure 15.3 Adding an external service endpoint to a worker role. This service endpoint will be managed
by Azure and be enrolled in the load balancer. This will make the service available outside of Azure.

342 CHAPTER 15 Processing with worker roles
Name the service endpoint StringReverseService and set it to be an input endpoint,
using TCP on port 2202. There’s no need to use any certificates or security at this time.

 After you save these settings, you’ll find the equivalent settings in the ServiceCon-
figuration.csdef file:

<Endpoints>
 <InputEndpoint name="StringReverserService" protocol="tcp" port="2202" />
</Endpoints>

You might normally host your service in IIS or WAS, but those aren’t available in a
worker role. In the future, you might be able to use Windows Server AppFabric, but
that isn’t available yet, so you’ll have to do this the old-fashioned way. You’ll have to
host the WCF service using ServiceHost, which is exactly that, a host that will act as a
container to run your service in. It will contain the service, manage the endpoints and
configuration, and handle the incoming service requests.

 Next you need to add a method called StartStringReversalService. This
method will wire up the service to the ServiceHost and the endpoint you defined.
The contents of this method are shown in the following listing.

private void StartStringReversalService()
{
 this.serviceHost = new ServiceHost(typeof(ReverseStringTools));

 NetTcpBinding binding = new NetTcpBinding(SecurityMode.None);

 RoleInstanceEndpoint externalEndPoint = RoleEnvironment
 ➥ .CurrentRoleInstance
 ➥ .InstanceEndpoints["StringReverserService"];

serviceHost.AddServiceEndpoint(
 typeof(IReverseString),
 binding,
 String.Format("net.tcp://{0}/StringReverserService",
 ➥ ExternalEndPoint.IPEndpoint));

 try
 {
 this.serviceHost.Open();
 }
 catch (Exception ex)
 {
 Trace.TraceError("Could not start string reverser servicehost. {0}",
 ➥ ex.Message);
 }

 while (true)
 {
 Thread.Sleep(500000);
 }
}

Listing 15.2 The StartStringReversalService method wires up the service

Retrieves endpoint
settings from
configuration

q

w
Starts
service host

e
Sleeps forever so service
host stays open

343Communicating with a worker role
Listing 15.2 is an abbreviated version of the real method, shortened so that it fits into
the book better. We didn’t take out anything that’s super important. We took out a
series of trace commands so we could watch the startup and status of the service. We
also abbreviated some of the error handling, something you would definitely want to
beef up in a production environment.

 Most of this code is normal for setting up a ServiceHost. You first have to tell the
service host the type of the service that’s going to be hosted q. In this case, it’s the
ReverseStringTools type.

 When you go to add the service endpoint to the service host, you’re going to need
three things, the ABCs of WCF: address, binding, and contract. The contract is pro-
vided by your code, IReverseString, and it’s a class file that you can reference to
share service contract information (or use MEX like a normal web service). The bind-
ing is a normal TCP binary binding, with all security turned off. (We would only run
with security off for debug and demo purposes!)

 Then the address is needed. You can set up the address by referencing the service
endpoint from the Azure project. You won’t know the real IP address the service will
be running under until runtime, so you’ll have to build it on the fly by accessing the
collection of endpoints from the RoleEnvironment.CurrentRoleInstance.Instan-
ceEndpoints collection w. The collection is a dictionary, so you can pull out the end-
point you want to reference with the name you used when setting it up—in this case,
StringReverserService. Once you have a reference to the endpoint, you can access
the IP address that you need to set up the service host.

 After you have that wired up, you can start the service host. This will plug in all the
components, fire them up, and start listening for incoming messages. This is done
with the Open method e.

 Once the service is up, you’ll want the main execution thread to sleep forever so
that the host stays up and running. If you didn’t include the sleep loop e, the call
pointer would fall out of the method, and you’d lose your context, losing the service
host. At this point, the worker role instance is sitting there, sleeping, whereas the ser-
vice host is running, listening for and responding to messages.

 We wired up a simple WPF test client, as shown in figure 15.4, to see if our service is
working. There are several ways you could write this test harness. If you’re using .NET 4,

Figure 15.4 A simple client
that consumes our super
string-reversing service. The
service is running in a worker
role, running in Azure, behind
the load balancers. kltpzyxM!
kltpzyxM! kltpzyxM!

344 CHAPTER 15 Processing with worker roles
it’s very common to use unit tests to test your services instead of an interactive WPF client.
Your other option would be to use WCFTestClient.exe, which comes with Visual Studio.

 Exposing public service endpoints is useful, but there are times when you’ll want
to expose services for just your use, and you don’t want them made public. In this
case, you’ll want to use inter-role communication, which we’ll look at next.

15.2.3 Inter-role communication

Exposing service input endpoints, as we just discussed, can be useful. But many times,
you just need a way to communicate between your role instances. Usually you could
use a queue, but at times there might be a need for direct communication, either for
performance reasons or because the process is synchronous in nature.

 You can enable communication directly from one role instance to another, but
there are some issues you should be aware of first. The biggest issue is that you’ll have
direct access to an individual role instance, which means there’s no separation that
can deal with load balancing. Similarly, if you’re communicating with an instance and
it goes down, your work is lost. You’ll have to write code to handle this possibility on
the client side.

 To set up inter-role communication, you need to add an internal endpoint in the
same way you add an input endpoint, but in this case you’ll set the type to Internal
(instead of Input), as shown in figure 15.5. The port will automatically be set to
dynamic and will be managed for you under the covers by Azure.

 Using an internal endpoint is a lot like using an external endpoint, from the point
of view of your service. Either way, your service doesn’t know about any other
instances running the service in parallel. The load balancing is handled outside of
your code when you’re using an external endpoint, and internal endpoints don’t have
any available load balancing. This places the choice of which service instance to con-
sume on the shoulders of the service consumer itself.

Figure 15.5 You can set up an internal endpoint in the same way you set up an external endpoint. In
this case, though, your service won’t be load balanced, and the client will have to know which service
instance to talk to.

345Common uses for worker roles
Most of the work involved with internal endpoints is handled on the client side, your
service consumer. Because there can be a varying number of instances of your service
running at any time, you have to be prepared to decide which instance to talk to, if
not all of them. You also have to be wily enough to not call yourself if calling the ser-
vice from a sibling worker role instance.

 You can access the set of instances running, and their exposed internal endpoints,
with the RoleEnvironment static class:

foreach (var instance in
➥ RoleEnvironment.CurrentRoleInstance.Role.Instances)
{
 if (instance != RoleEnvironment.CurrentRoleInstance)
 SendMessage(instance.InstanceEndpoints["MyServiceEndpointName"]);
}

The preceding sample code loops through all of the available role instances of the
current role. As it loops, it could access a collection of any type of role in the applica-
tion, including itself. So, for each instance, the code checks to see if that instance is
the instance the code is running in. If it isn’t, the code will send that instance a mes-
sage. If it’s the same instance, the code won’t send it a message, because sending a
message to oneself is usually not productive.

 All three ways of communicating with a worker role have their advantages and dis-
advantages, and each has a role to play in your architecture:

� Use a queue for complete separation of your instances from the service con-
sumers.

� Use input endpoints to expose your service publicly and leverage the Azure
load balancer.

� Use internal endpoints for direct and synchronous communication with a spe-
cific instance of your service.

Now that we’ve covered how you can communicate with a worker role, we should
probably talk about what you’re likely to want to do with a worker role.

15.3 Common uses for worker roles
Worker roles are blank slates—you can do almost anything with them. In this section,
we’re going to explore some common, and some maybe not-so-common, uses for
worker roles.

 The most common use is to offload work from the frontend. This is a common
architecture in many applications, in the cloud or not. We’ll also look at how to use
multithreading in roles, how to simulate a worker role, and how to break a large pro-
cess into connected smaller pieces.

15.3.1 Offloading work from the frontend

We’re all familiar with the user experience of putting products into a shopping cart
and then checking out with an online retailer. You might have even bought this book

346 CHAPTER 15 Processing with worker roles
online. How retailers process your cart and your order is one of the key scenarios for
how a worker role might be used in the cloud.

 Many large online retailers split the checkout process into two pieces. The first
piece is interactive and user-facing. You happily fill your shopping cart with lots of
stuff and then check out. At that time, the application gathers your payment details,
gives you an order number, and tells you that the order has been processed. Then it
emails all of this so you can have it all for your records. This is the notification email
shown in figure 15.6.

 After the customer-facing work is
done, the backend magic kicks in to
complete the processing of the
order. You see, when the retailer
gave you an order number, they were
sort of fibbing. All they did was sub-
mit the order to the backend pro-
cessing system via a message queue
and give you the order number that
can be used to track it. One of the
servers that are part of the backend
processing group picks up the order and completes the processing. This probably
involves charging the credit card, verifying inventory, and determining the ability to
ship according to the customer’s wishes. Once this backend work is completed, a sec-
ond email is sent to the customer with an update, usually including the package track-
ing number and any other final details. This is the final email shown in figure 15.6.

 By breaking the system into two pieces, the online retailer gains a few advantages.
The biggest is that the user’s experience of checking out is much faster, giving them a
nice shopping experience. This also takes a lot of load off of the web servers, which
should be simple HTML shovels. Because only a fraction of shoppers actually check
out (e-tailers call this the conversion rate), it’s important to be able to scale the web
servers very easily. Having them broken out makes it easy to scale them horizontally
(by adding more servers), and makes it possible for each web server to require only
simple hardware. The general strategy at the web server tier is to have an army of ants,
or many low-end servers.

 This two-piece system also makes it easier to plan for failure. You wouldn’t want a web
server to crash while processing a customer’s order and lose the revenue, would you?

 This leaves the backend all the time it needs to process the orders. Backend server
farms tend to consist of fewer, larger servers, when compared to the web servers.
Although you can scale the number of backend servers as well, you won’t have to do
that as often, because you can just let the flood of orders back up in the queue. As
long as your server capacity can process them in a few hours, that’s OK.

 Azure provides a variety of server sizes for your instances to run on, and sometimes
you’ll want more horsepower in one box for what you’re doing. In that case, you can
use threading on the server to tap that entire horsepower.

Backend server

Backend server

Final email Notification email

Queue
Web server

DB

Figure 15.6 The typical online retailer will process a
customer’s order in two stages. The first saves the cart
for processing and immediately sends back a thank you
email with an order number. Then the backend servers
pick up the order and process it, resulting in a final
email with all of the real details.

347Common uses for worker roles
15.3.2 Using threads in a worker role

There may be times when the work assigned to a particular worker role instance needs
multithreading, or the ability to process work in parallel by using separate threads of
execution. This is especially true when you’re migrating an existing application to the
Azure platform. Developing and debugging multithreaded applications is very diffi-
cult, so deciding to use multithreading isn’t a decision you should make lightly.

 The worker role does allow for the creation and management of threads for your
use, but as with code running on a normal server, you don’t want to create too many
threads. When the number of threads increases, so does the amount of memory in use.
The context-switching cost of the CPU will also hinder efficient use of your resources.
You should limit the number of threads you’re using to two to four per CPU core.

 A common scenario is to spin up an extra thread in the background to process
some asynchronous work. Doing this is OK, but if you plan on building a massive com-
putational engine, you’re better off using a framework to do the heavy lifting for you.
The Parallel Extensions to .NET is a framework Microsoft has developed to help you
parallelize your software. The Parallel Extensions to .NET shipped as part of .NET 4.0
in April of 2010.

 Although we always want to logically separate our code to make it easier to main-
tain, sometimes the work involved doesn’t need a lot of horsepower, so we may want to
deploy both the web and the worker sides of the application to one single web role.

15.3.3 Simulating worker roles in a web role

Architecting your application into discrete pieces, some of which are frontend and
some of which are backend, is a good thing. But there are times when you need the
logical separation, but not the physical separation. This might be for speed reasons, or
because you don’t want to pay for a whole worker role instance when you just need
some lightweight background work done.

MAINTAINING LOGICAL SEPARATION

If you go down this path, you must architect
your system so you can easily break it out into a
real worker role later on as your needs change.
This means making sure that while you’re
breaking the physical separation, you’re at
least keeping the logical separation. You
should still use the normal methods of passing
messages to that worker code. If it would use a
queue to process messages in a real worker instance, it should use a queue in the sim-
ulated worker instance as well. Take a gander at figure 15.7 to see what we mean. At
some point, you’ll need to break the code back out to a real worker role, and you
won’t want to have to rewrite a whole bunch of code.

 Be aware that the Fabric Controller will be ignorant of what you’re doing, and it
won’t be able to manage your simulated worker role. If that worker role code goes out

HTTP

ASP.NET Simulated
worker role

Web role

Local WCF service
or queue

Figure 15.7 You can simulate a worker
role in your web role if it’s very lightweight.

348 CHAPTER 15 Processing with worker roles
of control, it will take down the web instance it’s running in, which could cascade to a
series of other problems. You’ve been warned.

 If you’re going to do this, make sure to put the worker code into a separate library
so that primary concerns of the web instance aren’t intermingled with the concerns of
the faux worker instance. You can then reference that library and execute it in its own
thread, passing messages to it however you would like. This will also make it much eas-
ier to split it out into its own real worker role later.

UTILIZING BACKGROUND THREADS

The other issue is getting a background thread running so it can execute the faux
worker code. An approach we’ve worked with is to launch the process on a separate
thread during the Session_Start event of the global.asax. This will fire up the thread
once when the web app is starting up, and leave it running.

 Our first instinct was to use the Application_Start event, but this won’t work.
The RoleManager isn’t available in the Application_Start event, so it’s too early to
start the faux worker.

 We want to run the following code:

Thread t = new Thread(new ThreadStart(FauxWorkerSample.Start));
t.Start();

Putting the thread start code in the Session_Start event has the effect of trying to
start another faux worker every time a new ASP.NET session is started, which is when-
ever there’s a new visitor to the website. To protect against thousands of background
faux workers being started, we use the Singleton pattern. This pattern will make sure
that only one faux worker is started in that web instance.

 When we’re about to create the thread, we check a flag in the application state to
see if a worker has already been created:

object obj = Application["FauxWorkerStarted"];

if (obj == null)
{
 Application["FauxWorkerStarted"] = true;
 Thread t = new Thread(new ThreadStart(FauxWorkerSample.Start));
 t.Start();
}

If the worker hasn’t been created, the flag won’t exist in the application state property
bag, so it will equal null in that case. If this is the first session, the thread will be cre-
ated, pointed at the method we give it (FauxWorkerSample.Start in this case), and it
will start processing in the background.

 When you start it in this manner, you’ll have access to the RoleManager with the
ability to write to the log, manage system health, and act like a normal worker
instance. You could adapt this strategy to work with the OnStart event handler in your
webrole.cs file. This might be a cleaner place to put it, but we wanted to show you the
dirty work around here.

349Common uses for worker roles
 Our next approach is going to cover how best to handle a large and complex
worker role.

15.3.4 State-directed workers

Sometimes the code that a worker role runs is large and complex, and this can lead to
a long and risky processing time. In this section, we’ll look at a strategy you can use to
break this large piece down into manageable pieces, and a way to gain flexibility in
your processing.

 As we’ve said time and time again, worker roles tend to be message-centric. The
best way to scale them is by having a group of instances take turns consuming mes-
sages from a queue. As the load on the queue increases, you can easily add more
instances of the worker role. As the queue cools off, you can destroy some instances.

 In this section, we’ll look at why large worker roles can be problematic, how we can
fix this problem, and what the inevitable drawbacks are. Let’s start by looking at the
pitfalls of using a few, very large workers.

THE PROBLEM

Sometimes the work that’s needed on a message is large and complicated, which leads
to a heavy, bloated worker. This heaviness also leads to a brittle codebase that’s diffi-
cult to work with and maintain because of the various code paths and routing logic.

 A worker that takes a long time to process a single request is harder to scale and
can’t process as many messages as a group of smaller workers. A long-running unit of
work also exposes your system to more risk. The longer an item takes to be processed,
the more likely it is that the work will fail and have to be started over. This is no big
deal if the processing takes 3 seconds, but if it takes 20 minutes or 20 hours, you have
a significant cost to failure.

 This problem can be caused by one mes-
sage being very complex to process, or by a
batch of messages being processed as a group.
In either case, the unit of work being per-
formed is large, and this raises risk. This prob-
lem is often called the “pig in a python”
problem (as shown in figure 15.8), because
you end up with one large chunk of work mov-
ing through your systems.

 We need a way to digest this work a little
more gracefully.

THE SOLUTION

The best way to digest this large pig is to break
the large unit of work into a set of smaller pro-
cesses. This will give you the most flexibility when it comes to scaling and managing
your system. But you want to be careful that you don’t break the processes down to
sizes that are too small. At this level, the latency of communicating with the queue and

Work to be completed Bloated worker process

This leads to an indigestible piece
of work slowing everything down.

tom!

Figure 15.8 The “pig in a python” problem
can often be seen in technology and
business. It’s when a unit of work takes a
long time to complete, like when a python
eats a pig. It can take months for the snake
to digest the pig, and it can’t do much of
anything else during that timeframe.

350 CHAPTER 15 Processing with worker roles
other storage mechanisms in very chatty ways may introduce more overhead than you
were looking for.

 When you analyze the stages of processing on the message, you’ll likely conceive of
several stages to the work. You can figure this out by drawing a flow diagram of the cur-
rent bloated worker code. For example, when processing an order from an e-commerce
site, you might have the following stages:

1 Validate the data in the order.
2 Validate the pricing and discount codes.
3 Enrich the order with all of the relevant customer data.
4 Validate the shipping address.
5 Validate the payment information.
6 Charge the credit card.
7 Verify that the products are in stock and able to be shipped.
8 Enter the shipping orders into the logistics system for the distribution center.
9 Record the transaction in the ERP system.

10 Send a notification email to the customer.
11 Sit back and profit.

You can think of each state the message goes through as a separate worker role, con-
nected together with a queue for each state. Instead of one worker doing all of the
work for a single order, it only processes one of the states for each order. The different
queues represent the different states the message could have. Figure 15.9 compares a
big worker that performs all of the work, to a series of smaller workers that break the
work out (validating, shipping, and notifying workers).

 There might also be some other processing states you want to plan for. Perhaps
one for really bad orders that need to be looked at by a real human, or perhaps you
have platinum-level customers who get their orders processed and shipped before
normal run-of-the-mill customers. The platinum orders would go into a queue that’s
processed by a dedicated pool of instances.

 You could even have a bad order routed to an Azure table. A customer service rep-
resentative could then access that data with a CRM application or a simple InfoPath

Producer
(web site)

New

Verify

Verify

Ship

Ship

Notify

Notify
Big worker

Validated

Shipped
Completed

Figure 15.9 A monolithic worker role compared
to a state-driven worker role. The big worker
completes all the work in one step, leading to the
“pig in a python” problem of being harder to
maintain and extend as needed. Instead, we can
break the process into a series of queues and
workers, each dedicated to servicing a specific
state or stage of the work to be done.

351Common uses for worker roles
form, fix the order, and resubmit it back into the proper queue to continue being pro-
cessed. This process is called repair and resubmit, and it’s an important element to have
in any enterprise processing engine.

 You won’t be able to put the full order details into the queue message—there
won’t be enough room. The message should contain a complete work ticket, repre-
senting where the order data can be found (perhaps via an order ID), as well as some
state information, and any information that would be useful in routing the message
through the state machine. This might include the service class of the customer, for
example—platinum versus silver.

 As the business changes over time, and it will, making changes to how the order is
processed is much easier than trying to perform heart surgery on your older, super
complicated, and bloated work role code. They don’t say spaghetti code for nothing.
For example, you might need to add a new step between steps 8 and 9 in our previous
list. You could simply create a new queue and a new worker role to process that queue.
Then the worker role for the state right before the new one would need to be updated
to point to the new queue. Hopefully the changes to the existing parts of the system
can be limited to configuration changes.

EVEN COOLER—MAKE THE STATE WORKER ROLE ITS OWN AZURE SERVICE

How you want to manage your application in the cloud should be a primary consider-
ation in how you structure the Visual Studio solution. Each solution becomes a single
management point. If you want to manage different pieces without affecting the
whole system, those should be split out into separate solutions.

 In this scenario, it would make sense to separate each state worker role to its own
service in Azure, which would further decouple them from each other. This way, when
you need to restart one worker role and its queue, you won’t affect the other roles.

 In a more dynamic organization, you might need to route a message through these
states based on some information that’s only available at runtime. The routing infor-
mation could be stored in a table, with rules for how the flow works, or by simply stor-
ing the states and their relationships in the cloud service configuration file. Both of
these approaches would let you update how orders were processed at runtime without
having to change code. We’ve done this when orders needed different stages depend-
ing on what was in the order, or where it was going. In one case, if a controlled sub-
stance was in the order, the processing engine had to execute a series of additional
steps to complete the order.

 This approach is often called a poor man’s service bus because it uses a simple way of
connecting the states together, and they’re fairly firm at runtime. If you require a
greater degree of flexibility in the workflow, you would want to look at the Itinerary1 pat-
tern. This lets the system build up a schedule of processing stops based on the informa-
tion present at runtime. These systems can get a little more complicated, but they result
in a system that’s more easily maintained when there’s a complex business process.

1 For more information on the Itinerary pattern, see the Microsoft Application Architecture Guide from Patterns &
Practices at Microsoft. It can be found at http://apparchguide.codeplex.com.

352 CHAPTER 15 Processing with worker roles
OOPS, IT’S NOT NIRVANA

As you build this out, you’ll discover a drawback. You now have many more running
worker roles to manage. This can create more costs, and you still have to plan for
when you eventually will swallow a pig. If your system is tuned for a slow work day, with
one role instance per state, and you suddenly receive a flood of orders, the large
amount of orders will move down the state diagram like a pig does when it’s eaten by a
python. This forces you to scale up the number of worker instances at each state.

 Although this flexibility is great, it can get expensive. With this model, you have
several pools of instances instead of one general-purpose pool, which results in each
pool having to increase and then decrease as the pig (the large flood of work) moves
through the pipeline. In the case of a pig coming through, this can lead to a stall in
the state machine as each state has to wait for more instances to be added to its pool to
handle the pig (flood of work). This can be done easily using the service management
APIs, but it takes time to spin up and spin down instances—perhaps 20 minutes.

 The next step to take, to avoid the pig in a python problem, is to build your worker
roles so that they’re generic processors, all able to process any state in the system. You
would still keep the separate queues, which makes it easier to know how many mes-
sages are in each state.

 You could also condense the queues down to one, with each message declaring
what state the order is in as part of its data, but we don’t like this approach because it
leads to favoritism for the most recent orders placed in the processors, and it requires
you to restart all of your generic workers when you change the state graph. You can
avoid this particular downfall by driving the routing logic with configuration and
dependency injection. Then you would only need to update the configuration of the
system and deploy a new assembly to change the behavior of the system.

 The trick to gaining both flexibility and simplicity in your architecture is to encap-
sulate the logic for each state in the worker, separating it so it’s easily maintainable,
while pulling them all together so there’s only one pool of workers. The worker, in
essence, becomes a router. You can see how this might work in figure 15.10. Each
message is routed, based on its state and other runtime data, to the necessary state

Completed

Verify
module

Ship
module

Notify
module

Generic
work

queue

Routing worker

Producer
(web site)

Figure 15.10 By moving to a consolidated state-
directed worker, we’ll have one queue and one
worker. The worker will act as a router, sending each
inbound message to the appropriate module based on
the message’s state and related itinerary. This allows
us to have one large pool of workers, but makes it
easier to manage and decompose our bulky process.

353Working with local storage
processor. This functions much like a factory. Each state would have a class that
knows how to process that state. Each state class would implement the same interface,
perhaps IorderProcessStage. This would make it easy for the worker to instantiate
the correct class based on the state, and then process it. Most of these classes would
then send the message back to the generic queue, with a new state, and the cycle
would start again.

 There are going to be times when you’re working with both web and worker roles
and you’re either importing legacy code that needs access to a local drive, or what
you’re doing requires it. That’s why we’ll discuss local storage next.

15.4 Working with local storage
There are times when the code you’re working with will need to read from and write
to the local filesystem. Windows Azure allows for you to request and access a piece of
the local disk on your role instance.

 You can create this space by using the configuration of your role. You won’t have
control over the path of the directory you’re given access to, so you should make sure
that the file path your code needs to access is part of your configuration. A hardcoded
path will never remain accurate in the cloud environment.

 We recommend that you only use local storage when you absolutely have to,
because of some limitations we’ll cover later in this section. You’ll likely need to use
local storage the most when you’re migrating to the cloud existing frameworks or
applications that require local disk access.

15.4.1 Setting up local storage

You can configure the local storage area you need as part of your role by adding a few
simple lines of configuration to your role. The tag we’re going to work with is the
LocalStorage tag. It will tell the Fabric Controller to allocate local file storage space
on each server the role instance is running on.

 In the configuration element, you need to name the storage space. This name will
become the name of the folder that’s reserved for you. You’ll need to define how
much filesystem space you’ll need. The current limit is 20 GB per role instance, with a
minimum of 1 MB.

<LocalResources>
 <LocalStorage name="FilesUploaded" cleanOnRoleRecycle="false"
 ➥ sizeInMB="15" />
 <LocalStorage name="VirusScanPending" cleanOnRoleRecycle="true"
 ➥ sizeInMB="5" />
</LocalResources>

You can declare multiple local storage resources, as shown in the preceding code snip-
pet. It’s important that the local file storage only be used for temporary, unimportant
files. The local file store isn’t replicated or preserved in any way. If the instance fails

354 CHAPTER 15 Processing with worker roles
and it’s moved by the Fabric Controller to a new server, the local file store isn’t pre-
served, which means any files that were present will be lost.

TIP There is one time when the local file storage won’t be lost, and that’s when
the role is recycled, either as part of a service management event on your part,
or when the Fabric Controller is responding to a minor issue with your server.
In these cases, if you’ve set the cleanOnRoleRecyle parameter to false, the
current files will still be there when your instance comes back online.

Instances may only access their own local storage. An instance may not access another
instance’s storage. You should use Azure BLOB storage if you need more than one
instance to access the same storage area.

 Now that you’ve defined your local storage, let’s look at how you can access it and
work with it.

15.4.2 Working with local storage

Working with files in local storage is just like working with normal files. When your
role instance is started, the agent creates a folder with the name you defined in the
configuration in a special area on the C: drive on your server. Rules are put in place to
make sure the folder doesn’t exceed its assigned quota for size. To start using it, you
simply need to get a handle for it.

 To get a handle to your local storage area, you need to use the GetLocalResource
method. You’ll need to provide the name of the local resource you defined in the ser-
vice definition file. This will return a LocalResource object:

public static LocalResource uploadFolder =
➥ RoleEnvironment.GetLocalResource("FilesUploaded");

After you have this reference to the local folder, you can start using it like a normal
directory. To get the physical path, so you can check the directory contents or write
files to it, you would use the uploadFolder reference from the preceding code.

string rootPathName = uploadFolder.RootPath;

In the sample code provided with this book, there’s a simple web role that uses local
storage to store uploaded files. Please remember that this is just a sample, and that
you wouldn’t normally persist important files to the local store, considering its tran-
sient nature. You can view the code we used to do this in listing 15.3. When calling the
RootPath method in the local development fabric, Brian’s storage is located here:

C:\Users\brprince\AppData\Local\dftmp\s0\deployment(32)\res\deployment(32)
➥ .AiA_15___Local_Storage_post_pdc.LocalStorage_WebRole.0\directory\File
➥ sUploaded\

When we publish this little application to the cloud, it returns the following path:

C:\Resources\directory\0c28d4f68a444ea380288bf8160006ae.LocalStorage
➥ _WebRole.FilesUploaded\

355Summary
protected void Page_Load(object sender, EventArgs e)
{
 litName.Text = uploadFolder.Name;
 litMaxSize.Text = uploadFolder.MaximumSizeInMegabytes.ToString();
 litRootPath.Text = uploadFolder.RootPath;
}

protected void cmdUpload1_Click(object sender, EventArgs e)
{
 if (FileUpload1.HasFile)
 {
 FileUpload1.SaveAs
 ➥ (uploadFolder.RootPath + FileUpload1.FileName);
 }

 litUploadedFilePath.Text = uploadFolder.RootPath +
 ➥ FileUpload1.FileName;
 litUploadedFileContents.Text =
 ➥ System.IO.File.OpenText(uploadFolder.RootPath +
 ➥ FileUpload1.FileName).ReadToEnd();
}

Now that we know where the files will be stored, we can start working with them. In
the sample application, we have a simple file-upload control q. When the web page is
loaded, we write out the local file path to the local storage folder that we’ve been
assigned w. Once the file is uploaded, we store it in the local storage and write out its
filename and path e. We then write the file back out to the browser using normal file
APIs to do so. Our example code was designed to work only with text files, to keep
things simple.

 The local storage option is great for volatile local file access, but it isn’t durable
and may disappear on you. If you need durable storage, look at Azure storage or SQL
Azure. If you need shared storage that’s super-fast, you should consider the Windows
Server AppFabric distributed cache. This is a peer-to-peer caching layer that can run
on your roles and provide a shared in-memory cache for your instances to work with.

15.5 Summary
In this chapter, we’ve looked at how you can process work in the background with the
worker role in Azure. The worker role is an important tool for the cloud developer. It
lets you do work when there isn’t a user present, whether because you’ve intentionally
separated the background process from the user (in the case of a long-running check-
out process) or because you’ve broken your work into a discrete service that will pro-
cess messages from a queue.

 Worker roles scale just like web roles, but they don’t have a built-in load balancer
like web roles do. You’ll usually aggregate worker roles behind a queue, with each
instance processing messages from the queue, thereby distributing the work across

Listing 15.3 Working with local file storage

q Path to our
local folder

w
Path to the file
uploaded

e File
contents

356 CHAPTER 15 Processing with worker roles
the group. This gives you the flexibility to increase or decrease the number of worker
instances as the need arises.

 It’s quite possible to have an Azure application consist of only worker roles. You
could have some on-premises transaction systems report system activity (such as each
time a sale is made) to a queue in the cloud. The worker role would be there to pick
up the report and merge the data into the reporting system. This allows you to keep
the bulk of your application on-premises, while moving the computing-intensive back-
end operations to the cloud. A more robust way of doing this would be to connect the
on-premises system with the cloud system using the Windows Azure platform AppFab-
ric Service Bus, which is discussed in chapter 17.

 In this chapter we talked a lot about how to work with worker roles, and how to get
messages to them. One of the key methods for doing that is to use an Azure queue.
We’ll work closely with queues in the next chapter.

Messaging with the queue
Queues are the third part of the Azure storage system (after BLOBs and tables).
The concept of queues has been around a long time, and it’s likely that you’ve
worked with some technology related to queues already.

 A common architectural goal during design is to produce a system that’s tightly
integrated, but also loosely coupled. Any sizable system usually has several compo-
nents, and whether these components are running in the same memory space, or
on different boxes, they need to work closely together. This is what is meant by
“tightly integrated.” These different components should work as a team to provide
the value of the system in an easy and cohesive manner.

 If your only goal is tight integration, you’ll often end up with a system where the
components are tightly coupled as well. Tight coupling leads to a system that’s brit-
tle and that responds poorly to changes. This makes it difficult to manage the sys-
tem and to extend it to meet future needs. In a brittle system, a change in one

This chapter covers
� Loosely coupling your system

� Distributing work to a group of service
providers

� Learning how to use messaging
357

358 CHAPTER 16 Messaging with the queue
component can ripple through the whole system, requiring changes in many other
components. Such a system is difficult to understand, maintain, and troubleshoot.

 The easiest way to create a loosely coupled system is to provide a way for the com-
ponents to talk with each other through messages, and these messages should follow a
“tell, don’t ask” approach. You shouldn’t ask an object for a bunch of data, do some
work with it, and then give the results back to the object for recording. You should just
tell the object what you want it to do. This approach should be applied at a compo-
nent and system level as well—this approach helps to create code that’s well
abstracted and compartmentalized.

 Loose coupling also helps you isolate change from one component to another. For
example, an e-commerce website may be communicating with a backend ERP system.
When the company chooses to change ERP vendors, the queue will act as a buffer,
keeping the change from rippling over the queue boundary. All the producer knows is
that it puts messages in a certain format in the queue. The producer has no knowl-
edge of the consuming system, and doesn’t care what happens.

 The queue also becomes a pivot point for scaling. Later on we’ll talk about how
you can monitor the length (some use the term depth) of a queue to determine
whether messages are being consumed quickly enough. If not, you can scale out the
number of consumers processing the messages, which reduces the number of waiting
messages in the queue.

 Be careful, however, that you don’t put so much effort into loosely coupling your
system that you end up building an overly complex monstrosity that’s completely
unmanageable. As with many things, balance is the key.

16.1 Decoupling your system with messaging
There are many ways to decouple your system, but they usually center on messaging of
some sort. One of the most common ways is to use queues in between the different
parts of the system, or between completely different systems that must work together.

 Queues have several major components, and we’ll walk through each of them in
turn. We’re first going to look at how queues work in general—how they pass mes-
sages around. Then we’ll examine what messages are, the shape they have, and how
they work. Finally we’ll look closely at how an Azure queue works—what its limits are
and how to get the most out of it.

16.1.1 How messaging works

Queues have two ends. The producer end, where messages are put into the queue, is
usually represented as the bottom. The other end is the consumer end, where a con-
sumer will pull messages off of the top of the queue.

 Performance is critical to every part of Azure, and queues are no exception. Each
queue, like the rest of the Azure storage services, exists as three instances, each of
which is protected by different fault and update domains. This strategy protects your
queue from completely failing when a switch goes down or a patch is rolled out.

359Decoupling your system with messaging
As the demand for a queue increases, the storage fabric will start serving the requests
out of a memory cache. This dramatically increases the performance of the queue and
reduces the latency of using the queue.

 A queue is a FIFO structure: first in, first out. This contrasts with a stack, which is
LIFO: last in, first out. A real-world example of a queue is the line for tickets at a movie
theater, as illustrated in figure 16.1. When people arrive, they stand at the end of the
line. As the consumer (the ticket booth) completes sales, it works with the next person
at the head of the line, and as people buy their tickets, the line moves forward.

 At a busy movie theater, there may be many ticket booths consuming customers
from the line. Management may open more ticket booths, based on the length of the
line or based on how long people have to wait in the line. As the processing capacity
of the ticket counter is increased, the theatre is able to sell tickets to more customers
each minute. If the line gets short at a particular time, the theater manager might
close down ticket booths until only one or two are left open.

 Your system can use a similar concept with a queue. As the producer side of your sys-
tem (the shopping cart checkout process, for example) produces messages, they’re
placed in the queue. The consumer side of the system (the ERP system that processes
the orders and charges credit cards) will pull messages off of the queue. In this way, the
two systems are tightly integrated but loosely coupled, because of the queue in between.

 Queues are one-way in nature. A mes-
sage goes in at the bottom, moves towards
the top, and is eventually consumed, as you
can see in figure 16.2. In order for the con-
sumer message to communicate back to
the producer, a separate process must be
used. This could be a queue going in the
other direction, but it’s usually some other
mechanism, like a shared storage location.

 There’s an inherent order to a queue,
but you can’t usually rely on queues for
strict ordered delivery. In some scenarios,

Ticket booth Ticket booth Ticket booth

Figure 16.1 A queue forms for tickets on the
opening night of a new blockbuster movie. Movie-
goers enter (while wearing their fanboy outfits) at
the bottom, or end of the line. As the ticket booth
(consumer) processes the ticket requests, the
movie-goers move forward in the queue until they’re
at the head of the line.

Top of queue

Bottom of queue

Producer 1

Producer 2

Producer 3

Consumer 1

Consumer 2

Consumer 3

5

4

3

2 1

Figure 16.2 Producers place messages into the
queue, and consumers get them out. Each queue
can have multiple produces and consumers.

360 CHAPTER 16 Messaging with the queue
this can be important. A consumer processing checkouts from an e-commerce website
won’t need the messages in a precise order, but a set of doctor’s orders for a patient
might. It won’t matter which checkout is processed first, as long as it’s in a reasonable
order, but the order of what tests, drugs, and surgeries are performed on a patient is
likely important. We’ll explore some ways of handling this situation in Azure later in
this chapter.

16.1.2 What is a message?

Your Azure storage account can have many queues; at any time, a queue can have
many messages. Messages are the lifeblood of a queue system and should represent
the things that a producer is telling a consumer. You can think of a queue as having a
name, some properties, and a collection of ordered messages.

 In Azure, messages are limited to 8 KB in size. This low limit is designed for perfor-
mance and scalability reasons. If a message could be up to 1 GB in size, writing to and
reading from the queue would take a long time. This would also make it hard for the
queue to respond quickly when there were many different consumers reading mes-
sages from the top of the queue.

 Because of this limit, most Azure queue messages will follow a work ticket pattern.
The message will usually not contain the data needed by the consumer itself. Instead,
the message will contain a pointer of some sort to the real work that needs to be done.

 For example, following along with figure 16.3, a queue that contains messages for
video compression won’t include the actual video that needs to be compressed. The
producer will store the video in a shared storage location q, perhaps a BLOB con-
tainer or a table. Once the video is stored, the producer will then place a message in
the queue with the name of the BLOB that needs to be compressed w. There’ll likely
be other jobs in the queue as well.

 The consumer will then pick up the work ticket, fetch the proper video from BLOB
storage, compress the video e, and then store the new video back in BLOB storage r.
Sometimes the process ends there, with the original producer being smart enough to
look in the BLOB storage for the compressed version of the video, or perhaps a flag in
a database is flipped to show that the processing has been completed.

Producer
(website)

Consumer 1

Consumer 2

Consumer 3

1

BLOB storage

a.mpg

a.mpg a.wmv

c.mpg

f.mpg
4

Figure 16.3 Work tickets are used in queues to
tell the consumer what work needs to be done.
This keeps the messages small, and keeps the
queue scalable and performant. The work ticket
is usually a pointer to where the real work is.

361Decoupling your system with messaging
 The content of a queue message is always stored as a string. The string must be in a
format that can be included in an XML message and be UTF-8 encoded. This is
because a message is returned from the queue in an XML format, with your real mes-
sage as part of that XML. It’s possible to store binary data, but you need to serialize
and deserialize the data yourself. Keep in mind that when you’re deserializing, the
content coming out of the message will be base64 encoded.

 The content of the message isn’t the only part of the message that you may want
to work with. Every message has several important properties, as you can see in the
following listing.

<QueueMessagesList>
 <QueueMessage>
 <MessageId>20be3f61-b70f-47c7-
 ➥ 9f87-abbf4c71182b</MessageId>
 <InsertionTime>Fri, 07 Aug 2009
 ➥ 00:58:41 GMT</InsertionTime>
 <ExpirationTime>Fri, 14 Aug 2009 00:58:41 GMT</ExpirationTime>
 <PopReceipt>NzBjM2QwZDYtMzFjMC00MGVhLThiOTEtZ
 ➥ DcxODBlZDczYjA4</PopReceipt>
 <TimeNextVisible>Fri, 07 Aug 2009 00:59:16 GMT</TimeNextVisible>
 <MessageText>PHNhbXBsZT5zYW1wbGUgbWVzc2FnZTwvc2FtcGxlPg==</MessageText>
 </QueueMessage>
</QueueMessagesList>

The ID property is assigned by the storage system, and it’s unique q. This is the only
way to uniquely differentiate messages from each other because several messages
could contain the same content.

 A message also includes the time and date the message was inserted into the queue
w. It can be handy to see how long the message has been waiting to be processed. For
example, you might use this information to determine whether the messages are
becoming stale in the queue. This timestamp is also used by the storage service to
determine if your message should be garbage collected or not. Any message that’s
about a week old in any queue will be collected and discarded.

 Now that we’ve discussed what messages are, we’re ready to discuss what contains
them—the queue itself.

16.1.3 What is a queue?

The queue is the mechanism that holds the messages, in a rough order, until they’re
consumed. The queue is replicated in triplicate throughout the storage service, like
tables and BLOBs, for redundancy and performance reasons.

 Queues can be created in a static manner, perhaps as part of deploying your appli-
cation. They can also be created and destroyed dynamically. This is handy when you
need a way to organize and direct messages in different directions based on real-time
data or user needs.

Listing 16.1 A message in its native XML format

Unique
message ID

q

Date and time message
was placed on queue

w

362 CHAPTER 16 Messaging with the queue
 Each queue can have an unlimited number of messages. The only real limit is how
fast you can process the messages, and whether you can do so before they’re garbage
collected after one week’s time.

 Because a queue’s name appears in the URI for the REST request, it needs to follow
the constraints that DNS names have:

� It must start with a letter or number, and can contain only letters, numbers, and
the hyphen (-) character.

� The first and last letters in the queue name must be alphanumeric. The hyphen
(-) character may not be the first or last character.

� All letters in a queue name must be lowercase. (This is the requirement that
gets me every time.)

� A queue name must be from 3 to 63 characters long.

A queue also has a set of metadata associated with it. This metadata can be up to 8 KB
in size and is a simple collection of name/value key pairs. This metadata can help you
track and manage your queues. Although the name of a queue can help you under-
stand what the use of the queue is, the metadata can be useful in a more dynamic situ-
ation. For example, the name of the queue might be the customer number that the
queue is related to, but you could store the customer’s service level (tin, silver, molyb-
denum, and gold) as a piece of metadata. This metadata then lives with the queue and
can be accessed by any producer or consumer of the queue.

 Queues are both a reliable and persistent way to store and move messages. They’re
reliable in that you should never lose a message—we’ll look at how this works in sec-
tion 16.4 when we discuss the message lifecycle. Queues are also strict in how they per-
sist your messages. If a server goes down, the messages aren’t lost, they remain in the
queue. This differs from a purely memory-based system, in which all of the messages
would be lost if the server were to have a failure.

16.1.4 StorageClient and the REST API

There are two basic ways to interact with a queue and its messages. The first is the Stor-
ageClient library that ships with the Azure SDK. The other mechanism for interacting
with queues is to use the REST API directly. You can create and consume REST mes-
sages in any way you want. Although this is a little more work, it’s worth learning how
the REST API works, so that you understand more fully how the storage system works.

 The REST entry point will be your key way to access Azure storage when you don’t
have a handy API lying around, like the StorageClient. Microsoft and several open
source teams are working to build SDKs similar to the StorageClient library for every
platform, including Python and PHP. All of these libraries use the REST protocols
under the hood.

 Each call into the REST API has a request header that includes some basic informa-
tion. The header needs to include which version of the service you’re targeting, the

363Working with basic queue operations
date and time of the request, and the authorization header. You can see a sample
header in the following listing.

POST /queue21b3c6dfe8626450880b9e16c70e2425e/messages?timeout=30 HTTP/1.1
x-ms-date: Fri, 07 Aug 2009 01:26:38 GMT
Authorization: SharedKey hsslog:Iow8eYFGeodLGqXrgbEcwDuA+aNOR0emEC9uy3Vnggg=
Host: hsslog.queue.core.windows.net
Content-Length: 80
Expect: 100-continue

The service version header is useful for preventing an update to the queue service
from disrupting your system. You can force your requests to be processed by a specific
version of the storage service, allowing you to control when you support and leverage
new features in a newer version of the service. If you omit the version header, your
request will be routed to the default version of the service.

 A queue can’t be made public or anonymous. Every operation against a queue
must be authenticated with the shared key method. Constructing the authorization
header for queue requests is the same as for BLOBs and tables.

 Now that you know how to forge the header, or the envelope, for a message, let’s
look at how to send commands to the queue.

16.2 Working with basic queue operations
To show you how to use the basic queue API operations, we’re going to build a queue
browser. This little tool (shown in figure 16.4) will help you debug any system you’re

Listing 16.2 A sample REST request header

Figure 16.4 A screenshot of the simple queue browser we’ll build in this chapter. It’s important
to note that your authors, while charming, aren’t graphic designers or UX specialists. This tool
will act as a vehicle for understanding the basics of working with queues.

364 CHAPTER 16 Messaging with the queue
building, by letting you look at the queues that are being used and see how they’re
working.

 We’ll be focusing on creating methods that perform each of the following opera-
tions of the browser:

� ListQueues()—Lists the queues that exist in your storage account
� Create() or CreateIfNotExist()—Creates queues in your account
� SetMetadata()—Writes metadata
� Clear()—Clears a queue of all of its pending messages
� Delete()—Deletes a queue or a message from the system

We aren’t going to focus on how WPF works, or the best application architecture for
this little application. This is meant to be “me-ware”—something that works for you
and doesn’t have to work for anyone else. You should use it as a harness to play with
the different APIs and learn how they work.

16.2.1 Get a list of queues

There are several basic queue operations that you’ll need to be able to work with. The
first one we’re going to look at is a method that will tell you what queues exist in your
account. You may not always need this. Usually, you’ll know what the queue for your
application is and provision it for yourself.

 To get a list of the available queues, you need to first connect to the queue service
and then call the method. You can see how in the following listing.

private CloudQueueClient Qsvc;
private IEnumerable<CloudQueue> qList;

CloudStorageAccount storageAccount =
➥ CloudStorageAccount.FromConfigurationSetting("DataConnectionString");

Qsvc = storageAccount.CreateCloudQueueClient();

qList = Qsvc.ListQueues();

You’ll use something like line q quite often. This creates a connection to the service,
similar to how you create a connection object to a database. You’ll want to create this
once for a block of code and hold it in memory so that you aren’t always reconnect-
ing to the service. In this little application, we create this object in the constructor for
the window itself and store it in a variable at the form level. This makes it available to
every method in the form and saves you the trouble of having to continuously recre-
ate the object.

 The CloudStorageAccount serves as a factory that creates service objects that rep-
resent the Azure Queue storage service, called the CloudQueueClient. There are sev-
eral ways to create the CloudQueueClient. The most common approach is to create it
as in listing 16.3, by using the FromConfigurationSetting method. This looks into

Listing 16.3 Connecting to the queue service and getting a list of queues

q

Creates queue client to
interact with queue

365Working with basic queue operations
your configuration and sets up all of the URIs, usernames, account names, and so on.
This is better than having to set four or five different parameters when you’re newing
up the connection.

 Once you have a handle to the Queue service, you can call ListQueues. This
doesn’t just return a list of strings, as you might expect, but instead returns a collec-
tion of queue objects. Each queue object represents a queue in your account and is
fully usable. The equivalent call to get a list of queues in REST would be like the fol-
lowing code. You can see that it’s a simple GET.

GET http://hsslog.queue.core.windows.net/
➥ ?comp=list&maxresults=50&timeout=30

If you don’t have any queues, you’ll get back an empty collection. In this case, your
next step would be to create a queue.

16.2.2 Creating a queue

Once you’re connected to the queue service you can create a queue with the queue
client. You do this by creating a reference to the queue, even if the queue doesn’t exist
yet. Then you can create the queue using the reference as a control point:

CloudQueue q = Qsvc.GetQueueReference("newordersqueue");
q.CreateIfNotExist();

In the preceding code, we first create a CloudQueue object. This is an empty object,
and this line doesn’t actually connect to the service. It’s merely an empty handle that
doesn’t point to anything. Then the CreateIfNotExist method is called on the queue
object. This will check if a queue with that name exists, and if it doesn’t, it’ll create
one. This is very handy.

 You can check whether a queue exists before you try to create it by using q.Does-
QueueExist. This method will return a Boolean value telling you whether the queue
exists or not.

 Your next step is to attach some metadata to the queue.

16.2.3 Attaching metadata

You can store up to 8 KB of data in the property bag for each queue. You might want
to use this to track some core data about the queue, or perhaps some core metrics on
how often it should be polled. To work with the metadata, use the following code:

CloudQueue q = Qsvc.GetQueueReference("newordersqueue");
q.Metadata.Add("ProjectName", "ElectronReintroductionPhasing");
q.Metadata.Remove("BadKeyNoDoughnut");
q.SetMetadata();

The metadata for a queue is attached as a property on the CloudQueue object. You work
with it like any other name value collection. In this code, we first add a new entry to the
metadata called ProjectName, with a value of ElectronReintroductionPhasing. But
this new entry won’t be saved back to the queue service until we call SetMetaData,
which connects to the service and uploads the metadata for the queue in the cloud.

366 CHAPTER 16 Messaging with the queue
You can remove existing properties from the bag if you no longer need them. In this
example, the Remove method removes BadKeyNoDoughnut from use. When you
remove an item from the metadata collection, you must follow that with a SetMeta-
Data call to persist the changes to the cloud.

 In our queue example application, we’ve set some metadata properties, namely
RefreshInterval and BackOffPace. You can see how we set and fetch these in fig-
ure 16.5.

 Now that you’ve created a queue and set its metadata, let’s look at how you can
delete a queue. On occasion, you’ll want to dynamically create and destroy queues.

16.2.4 Deleting a queue

It’s good practice to clear a queue before you delete it. This removes all of the mes-
sages from the queue. The clear queue method is handy for resetting a system or
clearing out poison messages that may have stopped up the flow.

 Deleting a queue is as simple as this, when using the client library:

CloudQueue q = Qsvc.GetQueueReference("newordersqueue");
q.Clear();
q.Delete();

The equivalent REST call would be as follows:

DELETE http://hsslog.queue.core.windows.net/newordersqueue?timeout=30

Being able to create and destroy queues in a single line of code makes them simple
objects to work with. In the past, using a queue in your system would require days, if
not weeks, of installing several queue servers (for redundancy purposes). They would
also require a lot of care and feeding. Queues in the cloud are much easier to work
with and don’t require any grooming or maintenance. But the real power of queues is
in the messages that flow through them, which we’ll delve into in the next section.

16.3 Working with messages
Now that you know how to work with queues, let’s look at how you can work with mes-
sages. As we mentioned above, a queue is a FIFO structure, similar to a line at the
movie theater. The first action we usually take with a queue it to put a message in it, or
enqueue a message.

Figure 16.5 Displaying the
metadata set on a queue. You
can attach up to 8 KB of
metadata to a queue. This can
help in managing the queue,
such as by specifying what the
backoff pace rate should be.

367Working with messages
16.3.1 Putting a message on the queue

When you put a message on the queue, the new message is placed onto the bottom or
end of the queue. When you get a message from the queue, it’s from the top or front
of the queue. Here we have a few lines of code that show how to add a message to a
queue:

CloudQueue q = Qsvc.GetQueueReference("newordersqueue");
CloudQueueMessage theNewMessage = new CloudQueueMessage("cart:31415");
q.AddMessage(theNewMessage);

To add a message to the queue, you need to get a reference to the queue, as we did in
the preceding code. Once you have the queue reference, you can call the AddMessage
method and pass in a CloudQueueMessage object. Creating the message is a simple
affair; in this case we’re simply passing in text that will be the content of the message.
You can also pass in a byte array if you’re passing some serialized binary data. Remem-
ber that the content of each message is limited to 8 KB in size. When you put a mes-
sage on a queue, a REST message is generated and sent to the queue. The following
listing shows you a sample of what that might look like. This sample is for entertain-
ment purposes only.

POST /my-special-queue/messages?timeout=30 HTTP/1.1
x-ms-date: Fri, 07 Aug 2009 01:49:25 GMT
Authorization: SharedKey hsslog:3oJPdtrUK47gMSpHfwrmasdnT5nJpGpszg=
Host: hsslog.queue.core.windows.net
Content-Length: 80
Expect: 100-continue

<QueueMessage><MessageText>cart:31415</MessageText></QueueMessage>

In this example, we’re adding a message with an order number that can be found in
the related Azure table. The consumer will pick up the message, unwrap the content,
and process the cart numbered 31415. Their shopping cart is probably filled with pie
and pie related accessories.

 Before we show you how to get a message, we want to talk about peeking.

16.3.2 Peeking at messages

Peeking is a way to get the content of a message in the queue without taking the mes-
sage off of the queue. This leaves the message still on the queue, so someone else can
grab it. Many people peek at messages to determine if they want to process the mes-
sage or not, or to determine how they should process the message. You can see how to
peek in this snippet of code:

CloudQueueMessage m = q.PeekMessage();

private IEnumerable<CloudQueueMessage> mList;
mList = q.PeekMessages(10);

Listing 16.4 An example of putting a message onto a queue with REST

368 CHAPTER 16 Messaging with the queue
Peeking at messages is easy. Calling the PeekMessage method returns a single mes-
sage—the one at the front of the queue. You can peek at more than one message by
calling PeekMessages and providing the number of messages you want returned. In
the preceding example, we asked for 10 messages.

 Now that you’ve peeked at the messages, you’re ready to get them.

16.3.3 Getting messages

You don’t have to peek at a message before getting it, and many times you won’t use
peek at all. Getting a message off of the queue is simple, as shown here:

private CloudQueueMessage currentMsg;
currentMsg = q.GetMessage();

If you already have a reference to your queue, getting a message is as simple as calling
GetMessage. There’s one override that lets you determine the visibility timeout of the
get. We’ll discuss the lifecycle of a message in section 16.4.

 Getting the contents of the message, so that you can work with it, is quite simple,
especially if it was string data and not binary data:

string s = currentMsg.AsString;

Once you have a message, you can use the AsString or AsBytes properties to access
the contents of the message. This is the meat of the message, and the part you’re most
likely interested in.

 Once you’ve processed a message, you’ll want to delete it. This takes it off of the
queue.

16.3.4 Deleting messages

Deleting a message is as easy as getting it:

q.DeleteMessage(currentMsg);

To delete a message, you need to pass the message back into the DeleteMessage
method of the queue object. You can also do it easily with REST. You can only delete
one message at a time. The DELETE command in REST would look like the following
example. Notice that all of the pertinent data needed is in the query string.

DELETE http://hsslog.queue.core.windows.net/my-special
➥ -queue/messages/f5104ff3-260c-48c8-

➥ 9c35-cd8ffe3d5ace?popreceipt=AgAAAAEAAAAAAAAA1vkQXwEXygE%3d&timeout=30

Regardless of how you delete the message, through REST or the API, be prepared to
handle any exceptions that might be thrown.

 One aspect of messages that we haven’t looked at yet is their lifecycle. What hap-
pens when a message is retrieved? How does the queue keep the same message from
being picked up by several consumers at the same time? Is a message self-aware? These
are important questions for a queue service. Never losing a message (known as dura-
bility) is critical to a queue.

369Understanding message visibility
16.4 Understanding message visibility
A key aspect of a queue is how it manages its messages and their visibility. This is how
the queue implements the message durability developers are looking for. The goal is
to protect against a consumer getting a message, and then failing to process and
delete that message. If that happened, the message would be lost, and this isn’t good
news for any processing system.

 Visibility timeouts and idempotency are the two best tools for making sure your
messages are never lost. Understanding how these concepts relate to the queue and
understanding the lifecycle of a message are important to the success of your code.

16.4.1 About message visibility and invisibility

Every message has a visibility timeout property. When a message is pulled from the
queue, it isn’t really deleted; it’s just temporarily marked as invisible. The consumer is
also given a receipt (called the pop receipt) that’s unique to that GetMessage() oper-
ation. The duration of invisibility can be controlled by the consumer, and it can be as
long as 2 hours. If not explicitly set, it will default to 30 seconds. While a message is
invisible, it won’t be given out in response to new GetMessage() operations.

 As an example, let’s say a producer has
placed four messages in a queue, as shown in
figure 16.6, and we have two consumers that
will be reading messages out of the queue.

 Consumer 1 gets a message (msg 1), and
that message is marked invisible q. Sec-
onds later, consumer 2 performs a get oper-
ation as well. Because the first message
(msg 1) is invisible, the queue responds
with the next message (msg 2) w.

 Not long thereafter, consumer 1 finishes
processing msg 1 and performs a delete
operation on the message. As part of the
delete operation, the queue checks the pop receipt consumer 1 provides when it
passes in the message. This is to make sure consumer 1 is the most recent reader of
the message in question. The receipt matches in this case, and the message is deleted.

 Consumer 1 then does an immediate read, and gets msg 3. Consumer 1 fails to
complete processing within the invisibility time window and fails to delete msg 3 in
time. It becomes visible again.

 Just at that time, consumer 2 deletes msg 2 and does a get. The queue responds
with msg 3, because it’s visible again. While consumer 2 is processing msg 3, consumer
1 does finally finish processing msg 3 and tries to delete it. This time, the pop receipt,
which consumer 1 has, doesn’t match the most recently provided pop receipt, which
was given to consumer 2 when msg 3 was handed out for a second time. Because the
pop receipt doesn’t match, an error is thrown, and the message isn’t deleted. You’ll

Producer
(website)

Consumer 1

Consumer 2

Consumer 3

Message 1s

Message 1

Message 2

Message 3

Message 4

Figure 16.6 Two consumers getting
messages from a queue. A message is marked
invisible when a GetMessage() operation is
performed—just like a cloak of invisibility.
Note that this effect times out after a while.

370 CHAPTER 16 Messaging with the queue
likely see a 400 (Bad Request) error when this happens. The inner exception details
will explain that there aren’t any messages with a matching pop receipt available in
the queue to be deleted.

16.4.2 Setting visibility timeout

You can set the length of the visibility timeout when you get the message. This lets you
determine the proper length of the timeout for each individual message.

 When you specify the visibility timeout, you want to balance the expected process-
ing time and how long it will take for the system to recover from an error in process-
ing. If the timeout is too long, it will take a long time for the system to recover a lost
message. If the timeout is too short, too many of your messages will be repeatedly
reprocessed.

 This leads us to an important aspect of queues in general, but specifically the
Azure queue system.

16.4.3 Planning on failure

The Queue service guarantee is worded as promising that every message will be pro-
cessed, at least once. You can see this “at least once” business in the previous scenario.
Because consumer 1 failed to delete the message in time, the queue handed it out to
another consumer. The queue has to assume the original consumer has failed in
some way.

 This is very useful because it provides a way for your system to take a hit (a server
going down) and keep on going. Cloud architecture plans on failure and makes that
central to the structure of the system. Queues provide that capability quite nicely.

 The downside is that it’s possible that a consumer doesn’t crash but just takes lon-
ger to process the message than intended. In this case, you need to make sure that
your processing code is either idempotent, or that it checks before processing each
message to make sure it isn’t a duplicate copy. Because the message being reprocessed
is actually the same message, its ID property will be the same. This makes it easy to
check a history table or perhaps the status of a related order before processing starts.

 This little bit of complexity might make you think about deleting a message as
soon as you receive it—before you process it. Doing so is dangerous and unwise
because there will be failure along the way, and when that happens, the message
would be lost forever.

16.4.4 Use idempotent processing code

The goal of a messaging system is to make sure you never lose a message. No matter
how small or large, you never want to lose an order, or a set of instructions, or any-
thing else you might be processing.

 To avoid complexity, it’s best to make sure your processing code is idempotent.
Idempotent means that the process can be executed several times and the system will

371Patterns for message processing
result in the same state. Suppose you’re working with a piece of software that tracks
dog food delivery. When the food is delivered to the physical address, the handheld
computer sends a message to your queue in the cloud. The software uploads the phys-
ical signature of the recipient to BLOB storage and submits an order-delivered mes-
sage to the queue. The message contains the time of delivery and the order number,
which happens to also be the filename of the signature in BLOB storage.

 When this message is processed, the consumer copies the signature image to per-
manent storage, with the proper filename, and marks the order as delivered in the
package-tracking database.

 If this message were to be processed several times, there would be no detriment to
the system. The signature file would be overwritten with the same file. The order sta-
tus is already set to delivered, so we’d just be setting its status to delivered again. Using
the same delivery time doesn’t change the overall state of the system.

 This is the best way to handle the processing of queue messages, but it isn’t always
possible. The next section will discuss some common queue-processing patterns, and
some of them deal with working around this issue.

16.5 Patterns for message processing
As simple as queues are, they can prove valuable in a lot of complex scenarios. This
section will focus on some common approaches developers tend to use with queues.

16.5.1 Shared counters

You might run into a scenario where a piece of work is broken into many small
pieces, and you need to make sure all of those small pieces are completed before you
move on to the next step in your process. Sometimes these pieces are subsets of the
main problem.

 This is called single instruction, multiple data. The same processing will be performed
to each piece of data, but each piece is a subset of the whole. Consider working on an
image. If you break the image into 100 pieces and apply the same process to each
piece, you need to know for sure that all 100 pieces are completed before you can
stitch them back into the larger picture.

 If you just break the image into 100 pieces and throw them into the queue, it can
be difficult to know for sure when all of the 100 units of work have been completed.
This has to do with the visibility timeout and the nondeterministic nature of queues.
You might think that you could simply check the estimated length of the queue using
q.ApproximateMessageCount:

q.RetrieveApproximateMessageCount();
if (q.ApproximateMessageCount != null)
 int remainingMsg = q.ApproximateMessageCount;

If you do, you must call RetrieveApproximateMessageCount, which fetches the infor-
mation into the ApproximateMessageCount property from the queue in the cloud,

372 CHAPTER 16 Messaging with the queue
before you call the property itself. This property returns an approximate count of the
items in the queue, not an exact count, for two reasons. The first is that the queue is
running in triplicate, and an add operation might have completed on one instance
but not the other two, which would lead to an inconsistent result. The second reason
is that you might get a zero back from your check, only to have an invisible message
turn visible again when its timeout expires. Then you would have a message in the
queue you didn’t know about.

 You need a deterministic way to know for sure that all 100 pieces have been pro-
cessed. One way to do this is to use a shared counter, perhaps in an Azure table. You
can see a visualization of this process in figure 16.7.

 When the processing starts, a table is
made with a counter set to 0. As items are
submitted into the queue by the producer
w, the counter is incremented q. As the
work is completed in the consumer and
the messages are deleted e, the counter
is decremented r.

 There is one small flaw this approach
suffers from, and it’s a flaw all shared
counters have: it’s possible to run into a
concurrency problem. If one process
reads the counter, adds 1 to it, and then
writes it back to the table while another
process is doing the same thing, they
could end up overwriting each other,
resulting in losing track of the count. In order to fix this, you need to use locking on
the counter. Another solution, which is used in eventually consistent scenarios, is to
read the counter a second time before you write to it, to make sure it wasn’t changed
by someone else while you weren’t looking.

 This approach will give you a simple count indicating the progress of the work.
What if you want to know which pieces are done and which aren’t? No problem. You
can do this with a small change to the previous approach.

 Instead of writing to a shared counter on each put operation, create a new record
in the shared table. This will result in one record per queue message. As they’re pro-
cessed and the queue messages are deleted, the corresponding row should be deleted
in the table. Another option would be to mark a property of the row in the table as
complete, or store a completed time and date for performance tracking.

 In either of these ways—with the shared counter or the shared message tracking
table—you can know with a simple query whether all of the work has been completed
or not. You should think about wiring up a management portal that monitors the
counter or table to show the progress to an administrator.

Producer
(website)

Consumer 1

Consumer 2

Consumer 3

1

Shared counter

1

2

3

3

Figure 16.7 Using a shared counter is one way
to deterministically track how many messages
have been processed. This is a good approach if
you have a specific number of messages to
process and you need a precise count.

373Patterns for message processing
16.5.2 Work complete receipt

The preceding scenario works when you can control the producer and you have a
closed loop. But what if you don’t own the producer, or there are too many producers
for you to make them also manage a counter? In this case, you can use a return
receipt, or a work complete receipt.

 In this approach, as work is completed, a message is sent through a separate chan-
nel, perhaps another queue, back to the producer. This alerts the producer that the
work is done. This is common in scenarios where the process takes a long time to com-
plete, and the producer wants an asynchronous notification when the work is done.

 Instead of using a return queue, we’ve also had the consumer call a small notifica-
tion web service on the producer side, sending a simple message regarding the status
of the work. This makes the consumer an active part of the process, and it removes the
need for the producer to monitor a queue and become a consumer itself.

16.5.3 Asymmetric queues versus symmetric queues

Queues are decidedly one-way. They’re a way for one or more producers to communi-
cate with one or more consumers, but not the other way around.

 Using one queue in this manner is an asymmetric queue. Generally, in an asymmetric
queue, the producer finds out about the work being completed in a passive way. The
new file happens to be in the right place when the user hits Refresh, or the customer
receives an email when the order is shipped, or any number of other scenarios.

 As was discussed in section 16.5.2
about work complete receipts, some-
times using symmetric queues can be
useful. This makes the response from
the consumer back to the producer an
active one. Using a queue to do this does
help decouple the two halves of the sys-
tem, but it can lead to too much com-
plexity. This also turns the original
producer into a consumer in its own
right, which can be hard to implement if
the original producer was a website.
Because websites only respond to out-
side requests (a person performs a GET
or POST with a web browser to view the
catalog), they don’t have a running process to proactively read the queue and respond
to it. How this might work is laid out in figure 16.8.

 In figure 16.8, you can see two queues connecting the consumers and the produc-
ers together. The top queue is the inbound queue, sending messages to the consum-
ers. The bottom queue is the outbound queue, bringing messages back to the
consumers. A typical message pattern would be for the producer to send a message to

Producer
(website)

Consumer
(the backend)

1

2

r1

r2

Figure 16.8 A symmetric queue is when two
queues are used together to allow for two-way
communication between a set of consumers and a
set of producers. This keeps both sets of systems
loosely coupled. The inbound queue is on the top,
and the outbound queue is on the bottom.

374 CHAPTER 16 Messaging with the queue
the consumer by putting it in the inbound queue q. The consumer picks up the mes-
sage w, does some critical business work, like ordering pudding, and submits a confir-
mation message back to the producer by putting it in the outbound queue e. The
producer finally receives the confirmation message r.

16.5.4 Truncated exponential backoff

It’s quite common for a worker role to have an infinite loop that polls the queue, pro-
cesses the work, and pauses for a period of time if the queue is empty. The following
listing shows the typical infinite polling loop.

while (true)
{
 CloudQueueMessage msg = queue.GetMessage();
 if (msg != null)
 {
 string messageContent = msg.AsString;
 DoWork(messageContent);
 queue.DeleteMessage(msg);
 }
 else
 {
 System.Threading.Thread.Sleep(1000);
 }
}

In this listing, a permanent true condition starts the loop off, looping until true equals
false, which shouldn’t ever happen (and if it does, we’re all in for a world of hurt). We
grab the first message off of the queue and check to see if it’s null. If there aren’t any
messages on the queue, the GetMessage q would return a NULL message. If there is a
message, we process it, not deleting it until the real work is fully completed w.

 If there wasn’t a new message retrieved, the loop sleeps for a period of time e,
and then tries again.

 Sometimes you might find that a queue is polled too often. If this is a concern, you
can dynamically change the wait time in the bottom of the loop. A common algorithm
used in networking is called truncated exponential backoff. You can see an example of
how to implement this in listing 16.6. Under this system, each time a queue check
doesn’t return a message, the loop delay is extended exponentially until a certain ceil-
ing is reached. If the check does return a message, the loop delay is decreased, either
back to the lowest setting, or to the next lowest setting in the progression.

while (true)
{
 CloudQueueMessage msg = q.GetMessage();
 if (msg != null)
 {

Listing 16.5 The typical infinite loop to poll a queue

Listing 16.6 Adjusting the delay in a polling loop

q
Gets
message

w
Does work,
deletes message

e
Sleeps if
no messages

375Patterns for message processing
 q.DeleteMessage(msg);

 if (useGradualDecrease)
 if (currentInterval > intervalFloor)
 currentInterval =
 ➥ currentInterval / 2;
 else
 currentInterval = intervalFloor;
 else
 currentInterval = intervalFloor;

 }
 else
 {
 if (currentInterval < intervalCeiling)
 currentInterval = currentInterval * 2;

 Thread.Sleep(currentInterval * 1000);
 }
}

For example, suppose the start value for the delay loop was 2 seconds. After an empty
poll, the length would be doubled to 4 seconds. Successive empty checks would result
in the time delay increasing to 8, 16, 32, 64, 128, 256, and 512 seconds. You can see
the code that produces this progression at w. Figure 16.9 shows how the delay is
increasing in this example as the queue remains empty.

 At 512 seconds, the counter reaches the maximum set for the system, so it doesn’t
rise above 512 seconds. After some time a message appears. The system processes the
message, and then checks the length of the queue. Because there was activity on the
queue, the delay setting is set to the next step down the ladder, to 256 seconds at line
q. The code also supports an immediate drop to the floor interval if you want an
aggressive increase in the rate of polling.

 Figure 16.9 shows the backoff polling in action. The sample code will randomly
put messages in the monitored queue—there’s a one-in-three chance of it doing so.
The interval started at 2 seconds, and was immediately bumped to 4. Then a mes-
sage was processed, so it was dialed back down to 2. Then there was a succession of
empty calls, leading the code to rapidly increase the polling interval all the way up to
16 seconds between checks.

Decreases sleep
interval

q

Increases sleep
interval

w

Figure 16.9 The output from running the
truncated exponential backoff polling
algorithm. You can see the polling interval
exponentially increase from 2 to 4 to 8 to
16 as the queue continues to be empty.

376 CHAPTER 16 Messaging with the queue
16.5.5 Queue creation on startup

One advantage of the Azure storage system is the easy creation and deletion of
queues. A common trend is to inspect the storage system on system startup to deter-
mine if the needed entities (BLOBs, tables, and queues) exist. If they don’t exist,
they’re created on the spot. This makes it easy to deploy a system, knowing that it will
self-provision the storage resources it needs during startup.

 A possible drawback to this approach is forgetting to manage the state of these
resources carefully. If you’re rolling out an upgrade to the system, and the initialization
steps clear out the work queues and other storage entities, it’s possible that you could
lose valuable data or work in progress. Make sure that you test both new deployments
and upgrades to your system in a safe environment before relying on the self-provisioning
code. The automatic provisioning may also impact performance on system startup,
because it will be busy checking the infrastructure and configuring things as needed.

16.5.6 Dynamic queues versus static queues

Most queues in your applications will be static in nature. The design of your system
will require whatever queues it needs, and these will be provisioned when the applica-
tion is deployed and left to run as is.

 Alternatively, you can create queues dynamically. For example, you can create a
new custom queue for each new order that’s being processed by the system. This helps
your application dynamically scale, and it also helps you separate different concerns
in your system.

 Perhaps you’re building a system for a value-added network that manages the flow
of purchase order messages from vendors and suppliers. All day long you’re signing
up new vendors and suppliers, and some occasionally stop using your service. A great
way to automate the provisioning of the queues that are needed for each customer
that signs up is to dynamically create the queues and infrastructure as they sign up
and are approved as users of the system.

 You want to pay careful attention to the state of each customer, and make sure that
any leftover data is cleaned up, and entities are deprovisioned as customers stop using
your service. You don’t want to have to pay for unneeded infrastructure that’s forgot-
ten and left lying around.

 Another scenario would be even more short term than the preceding one. Think
back to the image-processing scenario. Because each image needs a queue to manage
its breakdown and processing, you could dynamically create a queue for each new image
job that’s submitted. When the processing is complete, the queue could be torn down.

16.5.7 Ordered delivery

Some scenarios require guaranteed ordered delivery, such as some EDI scenarios, but
the queue, as it is, doesn’t support ordered delivery. There are several approaches for
adding this capability on top of the normal queue service.

377Patterns for message processing
 The simplest approach hinges on the series of messages having a header message
that declares the length of the series, or the existence of a trailer message that tells the
system when the last message has been received.

 The basic approach would be for a process to monitor the normal queue, pull the
messages off, and store them in a temporary Azure table. The table should have an
integer property that stores the order of that message in the series. Once the defined
number of messages are received, or when the trailer message is received, the messages
can be properly ordered (usually by some element present in the message themselves)
and then sent on to the final system that needed the messages ordered properly.

 An optimization would be to have the process that’s ordering the messages start
trickling them on to the final destination when it knows that it has some of the mes-
sages already in order. For example, if messages arrive in the order 1, 2, 3, 5, 6, 4, the
message collator could almost immediately send messages 1, 2, and 3. The collator
would have to wait for message 4 to arrive before it could forward messages 4, 5, and 6.

16.5.8 Long queues

Most of the queues we’ve discussed so far have been in the form of an immediately ser-
viced queue, where there are one or more consumers actively processing the messages
in the queue.

 There are times when it’s important to have a long queue in play. This might be a
queue that receives messages all day long, without an active consumer. The messages
would be processed in a batch later that evening, when the consumer comes online.
You might have an application in the field that sends messages into the cloud during
the day; then, in the evening, a backend system comes online, processes all of the mes-
sages, and goes back offline. This would be a useful scenario when the consuming sys-
tem isn’t always available to process the messages you’re holding in the queue.

16.5.9 Dynamically scaling to meet queue demand

The promise of queues is that the processing of messages is decoupled from the pro-
duction of those messages. By decoupling the backend, you’re free to scale the back-
end to meet the demands of the number of messages in the queue.

 In a traditional environment, the number of producers is fairly static. The pool of
consumers can be scaled, but it requires all the work of buying an additional server,
provisioning it, and deploying it to the pool. This can be time consuming, and you’re
likely to miss the spike in demand while you’re waiting for hardware to be shipped
from your vendor.

 The promise of cloud computing is the true dynamic allocation of resources to
your computing needs. A management tool can be deployed that monitors the length
of the queue in question. The tool can then dynamically create additional consumers
(by increasing the number of deployed worker role instances using the service man-
agement API) based on the length of the queue. The management tool should define

378 CHAPTER 16 Messaging with the queue
a cap on the number of instances that can be created, and also rules as to when
instances should be created or destroyed.

 For example, you might define the minimum number of instances as zero, with a
maximum of five instances. The rule of thumb would be one instance per 20 messages
in the queue. The management tool would need to determine the length of the
queue on a regular basis, perhaps every 3 minutes. Your rules should always allow for a
little reserve buffer capacity. If you run too close to actual demand, the slight delay it
takes (a few minutes) to bring on new instances could have a deleterious effect on the
performance of your system.

 Because Azure is billed based on the number of active instances, and not the actual
use of the CPU, this can be a way to not only meet spikes in demand with grace, but
also to minimize the costs of the solution.

16.6 Summary
Azure queues are a great way to break your system into pieces that still work together to
get the work done, and they’re easy to work with. They don’t have to connect Azure web
and worker roles together. They can be used to help cloud applications, mobile appli-
cations, and enterprise applications communicate together. Instead of a mobile appli-
cation needing to punch through a firewall to submit a new repair ticket, it can submit
the ticket into the cloud, where it can be picked up later by the on-premises system.

 Queues are often the only on-ramp to a backend system. In this role, they act as the
service endpoint for the capability the backend system represents. We showed how
simple it is to create and manage queues. They provide a durable way of passing mes-
sages, and they’re high performance as well.

 Although queues are pivotal in leveraging the dynamic power of Azure with their
ability to act as load balancers for worker role instances, the real power is in the mes-
sages in the system. Messages are the lifeblood of a decoupled system, allowing differ-
ent components and subsystems to work together without being required to
understand dirty implementation details of external parts.

 The key to the power and reliability of queues lies in the message lifecycle and how
the visibility timeout is managed. This timeout provides a recovery mechanism in case
a message is lost in a failed server.

 We also explored several patterns that can be used in the design of your applica-
tion. The two most common manage the polling of the queue with a backoff polling
algorithm, and dynamically provision the proper number of consumers based on the
depth of the queue.

 We’ll next explore how to connect all of your on-premises and cloud services
together using the Windows Azure Platform AppFabric Service Bus, and how to secure
your services with the ACS service. These will allow you to connect to anything any-
where, and to keep it all secure.

Connecting in the cloud
with AppFabric
The Windows Azure platform AppFabric (hereafter referred to as AppFabric) is an
important piece of the Windows Azure puzzle. It’s part of the larger Azure ecosys-
tem and provides some fundamental features for working with hybrid applications.
It performs two major functions: securing REST services and connecting them
together.

 AppFabric is a big topic—one that deserves its own book. Whenever you start
talking about security, you get into long conversations. The same goes for service
buses. That’s because both of these topics involve a lot of terminology that the aver-
age developer is likely not familiar with.

 Our goal in this chapter is to give you enough of a look at AppFabric to under-
stand the core scenarios it can be used for, and to understand enough to confi-
dently dive into a detailed book on your own. We’ll be visiting the two key services

This chapter covers
� Securing your services with ACS

� Introducing the Service Bus

� Connecting to your service from anywhere
379

380 CHAPTER 17 Connecting in the cloud with AppFabric
(Access Control Service and Service Bus) with a simple and straightforward example.
You’ll need to know a little about Windows Communication Foundation (WCF), but
don’t worry—WCF isn’t scary.

17.1 The road AppFabric has traveled
AppFabric is arguably the most mature part of Windows Azure, at least if you measure
by how long it has been publicly available, if not broadly announced. AppFabric
started life as BizTalk Services. It was seen as a complementary cloud offering to Biz-
Talk Server. BizTalk is a high-end enterprise-grade messaging and integration plat-
form, and indeed the services fit into that portfolio well. Some joke that it was called
BizTalk Services as a clever way to keep it a secret, because BizTalk is one of the most
underestimated products Microsoft has. Just ask a BizTalk developer.

 When Windows Azure was announced at PDC 2008, the BizTalk Services were
renamed to .NET Services. Over the following year, there was a push to get developers
to work with the services and put the SDK through its paces. Out of that year of real-
world testing came a lot of changes.

 When Windows Azure went live in early 2010, the services were renamed again to
Windows Azure platform AppFabric to tie it more closely to the Windows Azure plat-
form. Some people were confused by the older .NET Services name, thinking it was
just the runtime and base class library running in the cloud, which makes no sense
whatsoever.

17.1.1 The two AppFabrics

Don’t confuse the AppFabric we’ll be covering in this chapter with the new Windows
Server AppFabric product. They’re currently related by name alone. Over time they’ll
merge to become the same product, but they aren’t there quite yet.

 Windows Server AppFabric is essentially an extension to Windows Activation Ser-
vice (WAS) and IIS that makes it easier to host WCF and Windows Workflow Founda-
tion (WF)-based services in your own data center. It supplies tooling and simple
infrastructure to provide a base-level messaging infrastructure. It doesn’t supply a
local instance of the Access Control Service (ACS) or Service Bus service at this time.
Likewise, Windows Azure platform AppFabric doesn’t provide any of the features that
Windows Server AppFabric does, at least today. In early CTPs of Windows Azure plat-
form AppFabric, there was the ability to host WF workflows in the cloud, but this was
removed as it moved toward a production release.

 The AppFabric we’re going to cover in this chapter makes two services available to
you: Access Control Service and the Service Bus.

17.1.2 Two key AppFabric services

AppFabric is a library of services that focus on helping you run your services in the
cloud and connect them to the rest of the world.

 Not everything can run in the cloud, as we’ve discussed several times already in
this book. For example, you could have software running on devices out in the field,

381Controlling access with ACS
a client-side rich application that runs on your customer’s computers, or software
that works with credit card information and can’t be stored off-premises.

 The two services in AppFabric are geared to help with these scenarios.

� Access Control Service (ACS) —This service provides a way to easily provide claims-
based access control for REST services. This means that it abstracts away authen-
tication and the role-based minutia of building an authorization system. Several
of Azure’s parts use ACS for their access control, including the Service Bus ser-
vice in AppFabric.

� Service Bus—This service provides a bus in the cloud, allowing you to connect
your services and clients together so they can be loosely coupled. A bus is simply
a way to connect services together and route messages around. An advantage of
the Service Bus is that you can connect it to anything, anywhere, without having
to figure out the technology and magic that goes into making that possible.

As we look at each of these services, we’ll cover some basic examples. All of these
examples rely on WCF. The samples will run as normal local applications, not as Azure
applications. We did it this way to show you how these services can work outside of the
cloud, but also to make the examples easier to use.

 Each example has two pieces that need to run: a client and a service. You can run
both simultaneously when you press F5 in Visual Studio by changing the startup proj-
ects in the solution configuration.

17.2 Controlling access with ACS
Managing identity, authentication, and authorization is hard. It takes a lot of work by
developers to get it right. One wrong step and you leave a gaping hole that a bad guy
can take advantage of and land your company on the front page of the newspaper.
Security is always a high priority on any project, but it’s loaded with special terms and
more complexity than developers generally want to deal with.

 We’re going to cover how you can integrate the user’s identity inside your com-
pany with applications running in the cloud. We’ll do this by leveraging claims-based
authorization, which allows you to federate your internal identities with applications
in the cloud by using standards-based tokens.

17.2.1 Identity in the cloud

When you move all of these concerns out of your own network and into the cloud,
these concerns become even bigger issues. The application is no longer sitting right
next to the source of authentication; the identity boundaries have been broken. How
do you fix this problem?

 The short answer is to build yet another identity store (a place to store usernames
and passwords) and give every user yet another username and password to remember.
They won’t remember them—they’ll either write it down on a sticky note on their
monitor, or they’ll call you once a month to remind them what it is. This is a bad expe-
rience for the user, and it’s dangerous for the owner of the application.

382 CHAPTER 17 Connecting in the cloud with AppFabric
 We call this the identity fishbowl. Your identity (who you are and what you can do) is
fairly easily maintained on your network, but the second you go off-premises you leave
your fishbowl. The application in the cloud doesn’t have any way to connect to your
Active Directory to authenticate you. The way to bridge these worlds is with open stan-
dards and the concept of a federated identity.

 There are some other challenges, as well. Let’s go beyond the previous scenario
where you have an internal user trying to access your application in the cloud. What if
the user doesn’t work for you, but is a customer or vendor of some sort. What if you
need to provision 100 user accounts for that new customer, or 10,000 accounts? This is
a lot of work for the administrator, it gives your end user yet another identity to
remember, and it exposes you to a risk of not deleting an account when it should be.
You’re on the hook for managing those accounts, not the customer or vendor. If you
have user accounts in your identity store that are active and belong to someone who
has left the company, you’re leaving a wide open hole for them (or an outside evil-
doer) to compromise that account and access your application when they shouldn’t.

 What you want is an easy and secure way for your internal users and external users
(customers, vendors, and so on) to be able to access your application using the identi-
ties they already have. This approach also has to have low impact on the service code.
You don’t want to have to fix the code every time you enroll a new customer, or find a
new protocol to support. You want to write applications, not become enterprise secu-
rity ninjas. Well, most of us do anyway.

ACS handles all of these concerns for us in a brilliantly elegant way. Before we can
really talk about ACS, though, we need a common understanding of some of the core
concepts ACS is built on.

17.2.2 Working with actors

The security field is loaded with special vocabulary and concepts that scare most devel-
opers. Even knowing the importance of security, many developers just find some sam-
ple code and paste it in. They either don’t have the understanding needed to work
with the code, or they won’t change it for fear of making a mistake.

 There are several actors in this security play that we need to define. The most
important is your service or application—the resource you’re trying to protect. It’s
commonly called the protected resource or the relying party because it’s relying on the
security infrastructure.

 The next actor is also easily defined: the client. This is the application that’s trying
to access the relying party. Clients are also sometimes called issuers. This side can get a
little complicated when you have a second client that’s being delegated through the
first client to the protected resource.

 Finally we have the ACS service itself. In security lingo, ACS is called the authoriza-
tion server or trusted authority. It provides the security infrastructure the client must use
to authenticate and use the protected resource.

 In our play, the authorization server is the director, the protected resource is the
lead actor, and the client is the supporting actor.

383Controlling access with ACS
17.2.3 Tokens communicate authorization

Our three actors need some way to communicate, and they do this by passing tokens
around. There are many formats for tokens, and there are many ways to pass them
around. The messages they pass around usually include a set of claims, which we’ll get
to in a moment.

 You likely use a token every day—your driver’s license. You can use it to prove your
identity or to prove a claim. A bar might demand you satisfy (prove) your claim that
you’re over 21. You never have to give them your birth certificate; you just give them
your driver’s license. You proved who you were, and when you were born, when you
applied for your license. The Department of Motor Vehicles validated your credentials
and provided you with a token that proves your claim of age on the license. The
department is the trusted source, the bar with the beer is the protected resource, and
your license is the token. You’re the client.

 The following figure shows this relationship between you, the bar, and the Depart-
ment of Motor Vehicles. You first authenticate to the DMV. Once they’re satisfied, they
give you a secure token that provides data for some claims. You can then use this
token to get a frosty beverage at any bar, even if not everybody knows your name. You
can see this relationship in figure 17.1.

 Some token formats are proprietary and some are an open standard. Microsoft has
worked with Google and Yahoo! to develop a new, simple open standard that can be
used across the cloud and the web. This standard is called OAuth, short for open autho-
rization. There are other open standards that are popular, such as SAML (Security
Assertion Markup Language), but they tend to be more complex and geared for SOAP
instead of REST. OAuth’s goal is to provide a simple token and protocol that makes it
easy to secure REST-based services.

NOTE You can read the OAuth specification at http://groups.google.com/
group/oauth-wrap-wg.

ACS is based on OAuth, but it knows how to read other types of tokens as well. There
are two halves to OAuth. The first is the Web Resource Authorization Protocol
(WRAP). This is the protocol used to make authorization requests and to move

Birth
certificate

Bar
(protected resource)

Consumer

Dept. of Motor Vehicles
(authorization server)

b

c

d

Figure 17.1 A bar doesn’t
require that you prove your
birth date; instead you provide
them with a valid and secure
token from a trusted authority.
You had to prove your birth
date to the authority q, and
they gave you a token w.
You then use that token to
get into the bar e.

http://groups.google.com/group/oauth-wrap-wg

384 CHAPTER 17 Connecting in the cloud with AppFabric
requests and tokens around on the wire. The other half of OAuth is the Simple Web
Token (SWT), which defines the token itself. SWT tokens are simple to read and
understand. The goal in designing OAuth and SWT was to build protocols that any
platform could leverage to secure REST-based services.

 All tokens coming from ACS will be SWT tokens. Here’s a sample token:

CustomerId%3d31415%26Issuer%3dhttps%253a%252f%252fstringreversalinc.
➥ accesscontrol.windows.net%252f%26Audience%3dhttp%253a%252f%252
➥ flocalhost%252fprocessstring%26ExpiresOn%3d1266231958%26HMACSHA256%
➥ 3dI5g66yaiECux9IQ8y7Ffm2S1p%252bAXF73HWfzSNPyPLOE%253d

Notice that this token is URL-encoded. Later on we’ll look at code that will let us shred
this token and understand the separate parts. If you’ve ever seen a SAML token, this is
far simpler and easier to work with. There isn’t even any XML!

 The OAuth working group’s website includes the specification for these protocols
and formats. They’re surprisingly easy to read, but they do lack an interesting plot.
They’re much easier to read than the WS-* and SAML/STS specifications, if that means
anything. You can read them all in about 30 minutes.

17.2.4 Making claims about who you are

With all these tokens flying around, we need something to put in them. Although
there are other pieces of data stored in tokens, the real reason tokens exist is to
deliver what is called “a set of claims.”

 A claim set is a list of claims made about the client or user by the authorization
server. What a claim represents is completely open and can be defined by the systems
using it. The claim must serialize to plain text—there isn’t any fancy XML in OAuth,
just a name-value collection of claims. A claim set might include a user’s name, their
birth date, their customer level, a list of roles or groups they belong to, or anything
else your service (the protected resource) needs.

 Your service will use these claims to make security and behavior decisions. The first
decision is whether the user is allowed to access your service. Then, once you have let
them in, you can use the claims to determine what they can do. If their role claim
includes manager, you might let them apply discounts to existing orders. If the role
claim is staff, maybe they can only create normal orders. What you ask for in claims
and what you do with them once you get them is up to you.

 This use of claims moves us away from the traditional role-based access control
(RBAC) and toward claims-based access control (CBAC). The concepts are the same;
the difference is in how we get the data regarding the user’s identity and how we make
decisions based on that data.

 As you implement ACS, it’s possible to add the use of SWT tokens to your system
without ripping out the old way of managing identity. This is useful if you’re trying to
transition to the new platform without breaking what already exists.

385Example: A return to our string-reversing service
17.3 Example: A return to our string-reversing service
In chapter 15, we talked about our amazing string-reversal company, since named
String Reversal Inc., and our service that used a new and innovative way to reverse
strings. In the time it has taken you to read the intervening chapter, the company has
grown and prospered. String-reversal user groups and industry conferences are
springing up all over the world.

 But our emerging company is running into some trouble. Every time we add a cus-
tomer, we have to do a lot of work to provision that customer in the system. This over-
head is getting in the way of our rapid expansion.

 It has also led to a few problems. While you were in the middle of reading the
chapter on queues, one of the company’s customers, Maine Reversal, was forced to
fire an employee, Newton Fernbottom, for insider string-reversing, a horrible, horri-
ble crime. Because that customer didn’t notify us that Newton was let go, we never dis-
abled his account. Newton ran home and starting a competing firm, Downeast
Reversing, using Maine Reversal’s account with our company.

 What we need to do now is provide a better way to authorize customers to use our
service, and we want to minimize the amount of code we need to change. Because any-
thing can be a client, and anything can be a protected resource with ACS, we’re going
to move our sample service to a normal local WCF service to make it easier to focus on
how ACS works. Everything ACS does can easily be applied to both services and clients
running in Azure.

17.3.1 Putting ACS in place

Your first step in upgrading the service is to support a simple scenario where custom-
ers will have a shared secret (similar to a username and password) to access the ser-
vice. Whoever they give that secret to will be able to use the service. They’ll be able to
change the secret when they need to, just like changing your password every 30 days.

 Your first step is to create an AppFabric namespace. This namespace is a lot like a
container in BLOB storage—it holds the settings for how you’re using the ACS service.
You could have several namespaces if you wanted to, perhaps to isolate different ser-
vices with different configurations.

 To create the namespace, you’ll use the Azure portal, shown in figure 17.2. Besides
creating the namespace, the portal doesn’t do much with regards to ACS. There are
other tools for that.

 To create a namespace, log in to the Azure portal and choose AppFabric on the
left side. You’ll then see a list of your existing namespaces and a button for creating a
new one.

 To create a new namespace, you simply need to provide a globally unique name for
your namespace. In figure 17.2, you can see that we have selected StringReversalInc
for our namespace. Once you click the Create button, AppFabric will provision its sys-
tems with your namespace.

386 CHAPTER 17 Connecting in the cloud with AppFabric
As you can see in figure 17.3, ACS has configured both a Service Bus and an ACS service
for your namespace. The service endpoints for both services will be displayed as shown
in the figure. Notice that the namespace is the hostname of the service endpoints.

Figure 17.2 To start
using AppFabric, you
must first create a
namespace. This
acts like a container
for the entire
configuration of ACS
and the Service Bus.
The name of the
namespace has to be
globally unique.

Figure 17.3 Once you create a namespace, AppFabric will provision that namespace with
ACS, Service Bus, management endpoints, and security keys.

387Example: A return to our string-reversing service
A management key will be created for you as well. This 32-byte symmetric key is what
you’ll use when accessing the AppFabric management service to perform operations
on your namespace. We won’t explore the management service in this chapter, but
you should check it out. These keys should not be shared outside your organization,
or published in a book where anyone can get ahold of them.

17.3.2 Reviewing the string-reversal service

For this chapter’s purposes, we’ll use a local REST version of the string-reversal service
developed in chapter 15. You can find the complete code for this revised service in the
sample code for this chapter. We’ve removed the entire worker role and Azure-related
code to do this. ACS is about securing REST-based services, and our old service used a
TCP-based binding. We’ve changed it to use REST by using the WebServiceHost and
the WebHttpBinding classes.

 The following listing shows how we’re building our simple little service. This code
will start up the service and wait for calls to the service.

using System.ServiceModel;
using System.ServiceModel.Web;

public class svcProcessString
{
 public static void Main(string[] args)
 {
 Console.WriteLine("Starting string reversal servicehost...");

 WebServiceHost serviceHost = new
 ➥ WebServiceHost(typeof(ReverseStringTools));

 WebHttpBinding binding = new WebHttpBinding(WebHttpSecurityMode.None);

 serviceHost.AddServiceEndpoint(typeof(IReverseString), binding, new
 ➥ Uri("http://localhost/processstring"));

 try
 {
 serviceHost.Open();
 Console.WriteLine("String reversal servicehost started.");
 }
 catch (Exception ex)
 {
 Console.WriteLine("Could not start string reverser servicehost. {0}",
 ➥ ex.Message);
 }

 Console.ReadLine();
 }
}

Listing 17.1 A simple REST service

Creates host to run
service code

Starts service host with
specified configuration

388 CHAPTER 17 Connecting in the cloud with AppFabric
If you run this sample string-reversal service, you can make all of the requests to the
service you want. The sample code includes a simple client that will call the service.

 The next few steps are going to center around adding code to the service so that it
can read and use SWT tokens. Once that’s done, you can upgrade the client so it can
fetch a token from ACS and use it during a request to the service.

17.3.3 Accepting tokens from ACS

You’ll need to upgrade the service so it can receive and work with ACS tokens. This
code is fairly trivial, and much of it is supplied in the AppFabric SDK, which you’ll
have to install in order to follow these next steps. You can find the SDK on the Azure
portal. It also includes several tools that we’ll look at in the next section.

 Exactly how you get the token and where you process it might change, depending
on your business situation and system architecture, but the steps will be generally the
same.

 The first step is to grab the token from the incoming message. The token will usually
be included in the header as an authorization entry. In some situations, it can also be
in the URL or in the body of the message, depending on the capabilities of the client.

 Exactly how you grab this header will differ based on how you’re receiving the mes-
sage. In WCF it’s best to do this in a custom ServiceAuthorizationManager class that’s
added to the WCF pipeline when you set up the channel. Every message will flow
through this class, and there you can make a decision about whether to let it through
or deny it access.

 In a normal WCF service, you need to use the WebOperationContext to retrieve the
header from the request:

string authorizationHeader =
➥ WebOperationContext.Current.IncomingRequest.Headers
➥ [HttpRequestHeader.Authorization];

This code will get the raw header. You now need to do a few things to make sure this
token is valid, and then you can use it to make decisions.

 The SDK has all the sample code you need to build a class called TokenValidator.
We’ve included a refactored version of this class in the chapter’s sample code that’s a
little easier to use. The validator will do a series of checks for you, and if they all pass,
it’ll return true. If the validation fails, the validator will deny access.

validator = new
➥ ACSTokenValidator("dqSsz5enDOFjUvUnrUe5p1ozEkp1ccAfUFyuYpawGW0=",
➥ "StringReversalInc", "http://localhost/stringservice");

if (!validator.ValidateAuthorizationHeader(authorizationHeader))
 DenyAccess();

To initialize the validator, you need to pass in three pieces of information:

� The signing key
� The ACS namespace to check against
� The URL of the service the message was sent to

389Example: A return to our string-reversing service
You’re passing in the key, the namespace you set up, called StringReversalInc, and
the URL of the service you’re protecting, http://localhost/stringservice.

 You then call the ValidateAuthorizationHeader on the header you pulled off the
message. If this returns false, you’ll deny access by calling a simple little method,
DenyAccess, that sets up the deny message:

private static void DenyAccess()
{
 WebOperationContext.Current.OutgoingResponse.StatusCode =
 ➥ HttpStatusCode.Unauthorized;
 WebOperationContext.Current.OutgoingRequest.Headers.Add("WWW-
 ➥ Authenticate", "WRAP");
 }

That’s all you need to receive the header. Most of the work involves making sure it’s a
valid header and something you can trust. This is the same job the bouncer at the bar
does, when he looks at your driver’s license to make sure it’s a real license and hasn’t
been tampered with.

17.3.4 Checking the token

We’ve put all of the token-checking logic into the ACSTokenValidator class, and we’ve
just discussed how to new up a validator. The validator includes some custom meth-
ods, namely Validate and IsHMACValid. When you pass in the header, the validator
will verify several aspects of it to make sure it’s valid. All of these checks test for the
negative; if the test passes, you have a bad token and the validator returns false.

 Table 17.1 summarizes the checks that we do in the code.

Table 17.1 Validation checks performed on a token

Check to be made Purpose

string.IsNullOrEmpty(authHeader) Makes sure you received a header.

!authHeader.StartsWith("WRAP ") Ensures the header starts with WRAP.

nameValuePair[0] != "access_token" Checks that there are two pieces to the
header, and that the first is equal to
access_token.

!nameValuePair[1].StartsWith("\"") ||
!nameValuePair[1].EndsWith("\""))

Checks that the second piece starts and
ends with a slash.

!Validate(GetTokenFromHeader(authHeader)) Grabs the token part of the header and
makes sure it’s valid.

IsHMACValid(token, signingKey) Makes sure the token has been signed
properly. If this is correct, you know who
sent it.

this.IsExpired(token) Checks that the token hasn’t expired.
Tokens are vulnerable to replay attacks, so
this is important.

390 CHAPTER 17 Connecting in the cloud with AppFabric
If the header passes all of these checks, you know you have a secure token from a
trusted source, and that it’s meant for you. This is the minimum you’ll want to do to
allow the message through to the service. You may also want to crack open the claim
set in the token to look at what claims have been sent, and make decisions on those
claims. In our example, we’ve mapped in some claims. One is the customer ID num-
ber, and the other is the customer’s service level. This might be used to determine
how long the strings they submit to our service can be. They might have to pay more
to reverse longer strings.

 That’s all you have to do to enable the service and consume and use ACS tokens for
authorization. Next we’ll look at how you can configure a client to add the authoriza-
tion header to their requests.

17.3.5 Sending a token as a client

In this section, you’re going to build a simple command-line client. This will make it
easier to focus on the service aspects of the code. Feel free to make it sexy by using Sil-
verlight or WPF.

 For this client, we’ll share the contract by sharing a project reference. (Many proj-
ects do this, especially when you own both ends of the conversation.) You should
either share the contract through a project reference, or through a shared assembly.

 In this case, our biggest customer, Maine Reversal, will be building this client.
We’ve set up a trusted relationship with them by swapping keys and configuring them
in ACS—we’ll look at how to do this in the next section. Maine Reversal won’t be send-
ing in any custom claims of their own, just their issuer identity. This process essentially
gives them a secure username and password.

 We’ve created a helpful utility class called ACSTokenValidator (found in the sam-
ple code for this chapter) that encapsulates the process of fetching an ACS header
from the AppFabric service. Again, this code is mostly from the SDK samples with some
tweaks we wanted to make. (Why write new code when they give us code that works?)

 To call the GetTokenFromACS method, you’ll pass in the service namespace (String-
ReversalInc), the issuer name (the client’s name, which is MaineReversal in this
case), the signing key that Maine Reversal uses, and the URL that represents your pro-
tected resource. This doesn’t have to be the real URI of the intended destination, but

this.IsIssuerTrusted(token) Ensures the sender is recognized as a
trusted source. We’ll cover this shortly.

this.IsAudienceTrusted(token) Checks that the audience is the intended
destination.

Table 17.1 Validation checks performed on a token

Check to be made Purpose

(continued)

391Example: A return to our string-reversing service
in many cases will be. In security parlance this is referred to as the audience. The
method call looks like this:

string Token = GetTokenFromACS("StringReversalInc",
 "MaineReversal",
 "ltSsoI5l+8DzLSmvsVOhOmflAsKHBYrGeCR8KtCI1eE=",
 "http://localhost/processstring");

The GetTokenFromACS method performs all the work. It uses the WebClient class to
create the request to ACS. If everything goes well, the ACS service will respond with a
token you can put in your authorization header on your request to the string-reversal
service.

 The following listing shows how you can request a token from the ACS service.

private static string GetTokenFromACS(string serviceNamespace, string
➥ issuerName, string issuerKey, string scope)
{
 WebClient client = new WebClient();
 client.BaseAddress = string.Format("https://{0}
 ➥ .accesscontrol.windows.net", serviceNamespace);

 NameValueCollection values =
 ➥ new NameValueCollection();
 values.Add("wrap_name", issuerName);
 values.Add("wrap_password", issuerKey);
 values.Add("wrap_scope", scope);

 byte[] responseBytes = client.UploadValues("WRAPv0.9", "POST", values);

 string response = Encoding.UTF8.GetString(responseBytes);

 return response
 .Split('&')
 .Single(value => value.StartsWith("wrap_access_token=",
 ➥ StringComparison.OrdinalIgnoreCase))
 .Split('=')[1];
}

You have to provide the GetTokenFromACS method with the base address for the
request q. This is a combination of the ACS service address, accesscontrol.windows.
net, and the namespace for the ACS account, StringReversalInc.

 To make the call, you need to provide three pieces of data: the issuer name (your
name in the ACS configuration), the signing key, and the namespace of the service
you’re trying to reach w.

 At this point, ACS will check your credentials. The issuer name is basically your
username, and the signing key is your password. If everything checks out, ACS will
respond with a valid token that you can attach to your request to the service e.

Listing 17.2 How a client gets a token from ACS

Specifies ACS
service address

q

Sends authorization
data

w

e Gives token
to caller

392 CHAPTER 17 Connecting in the cloud with AppFabric
17.3.6 Attaching the token

Attaching the token to the header of the request is fairly simple on most platforms.
You can also put the token information in the URL or the message body. Doing either
isn’t as good as using an authorization header, so only do this if your system doesn’t
support an authorization header.

 To add the token to the authorization header, you can add it to the Outgoing-
Request.Headers collection:

string authorizationHeader =
➥ string.Format("WRAP access_token=\"{0}\"",
➥ httpUtility.UrlDecode(Token));
WebOperationContext.Current.OutgoingRequest.Headers
➥ .Add("authorization", authorizationHeader);

To attach the token to the header, you need to use the UrlDecode method to decode
it, and then wrap it with the WRAP leading text. This tells the destination service that
the token is a WRAP token. This text will be stripped off by the server once the token is
validated. Then you add the header to the outgoing request using the WebOperation-
Context class.

 That’s all the client needs to do. Your client should be robust enough to handle
any errors in the ACS service call or the ACS token request being denied.

 In order for the token validation and generation to work, you have to set up some
configuration in the ACS service: a trusted relationship with the issuer, and some rules.

17.3.7 Configuring the ACS namespace

The ACS needs to be configured for your service. You’ve already learned how to define
a namespace, and the namespace is a container for the rest of the ACS configuration.
You can also chain namespaces together, which is the key mechanism for providing
simple delegation.

 Each namespace has four components: issuers, scopes, rules, and token policies.
These elements work together to help secure your REST service.

 The AppFabric SDK provides two tools for configuring your service, both of which
run locally and call into the management service: ACM.exe (used from the command
line) and the Azure configuration browser. (You can use the management service as a
third option, but that’ll require more work on your part.) Beyond the tool that sets up
the namespace, there aren’t any management tools on the ACS portal.

 The ACM.exe tool can be found in the tools folder where you installed the AppFab-
ric SDK. ACM is most useful when you’re automating a process or want to script the
configuration. But keep in mind that calls to the AppFabric management endpoint
aren’t free, like the Windows Azure management endpoints are.

 The Azure configuration browser is shipped with the SDK, but as a sample in
source-code form in a separate download file. You need to load the solution and com-
pile it to use it. This distribution approach is really useful because you can then
extend the tool to meet your needs, and the browser is a lot easier to use than the
command-line tool.

393Example: A return to our string-reversing service
 The configuration browser does have a few limitations. First, it’s really ugly, but
that’s OK. The second is that, at this time, it can’t update an existing cloud configura-
tion; it can only deploy a complete configuration. This means that any time you make
a change, you have to delete the configuration in the cloud and completely redeploy
the new configuration. An advantage of this approach is that you can store your config-
uration locally in an XML file, which aids in backup and configuration management.

 You’ll need to provide your service name and your management key with either tool.
For the ACM.exe application, you can put your settings in the app.config file, which
saves you from having to type them in as part of your commands every single time.

ISSUERS

Issuers are actors in the ACS system and represent consumers of your service. When
you create an issuer, you need to provide both a display name and an official issuer
name. Once the issuer is created, a signing key will be generated for you. This is the
key the issuer must sign their requests with when they ask the ACS service for a token.

 To create an issuer from a command line, you would use the following command:

acm create issuer
 -name:MaineReversal
 -issuername:MaineReversal
 -autogeneratekey

In the configuration browser
you’ll need to right-click on
the Issuers node and choose
Create. Figure 17.4 shows
how to set up your first client,
Maine Reversal.

 Setting up an issuer in the
system is akin to creating a
user. The issuer needs a name
(comparable to a username)
and a signing key (which is
like a password). These are
the credentials the issuer will
use to request an ACS token.

TOKEN POLICY

A token policy defines how
you want your tokens to be
created. Because token-based systems can be vulnerable to token-replay attacks, you’ll
first want to set a lifetime timeout for the token. This is expressed in seconds. When
the token is created, it’ll be stamped with the time when the token will expire. Once
it’s expired, the token will be considered invalid and won’t be accepted by a service.
You have to check for this expiration explicitly when you validate the token. We check
for this in the sample code for the chapter, as seen in the ACSTokenValidator class.

Figure 17.4 Creating an issuer is easy with the ACS
configuration browser. You’ll need to provide both a display
name and an official name for the issuer. You can use the tool
to automatically create the signing keys.

394 CHAPTER 17 Connecting in the cloud with AppFabric
The command for creating a token policy at the command line is as follows:

acm create tokenpolicy -name:StringReversalInc -autogeneratekey

To create a token policy in the configuration browser, right-click on the Token Policy
node and select Create. Figure 17.5 shows the Create New Token Policy dialog box,
where you can create a policy for your string service.

 The second piece of data you’ll need for your token policy is the signing key, which
can be generated for you. This is the key that will be used to sign the tokens generated
for you by the ACS.

SCOPES

A scope is a container that’s tied to a service URI. It brings together the rules that you
want applied to your service, as well as the token policy you want used for that service.

 To create a scope at the command-line level, you’ll need the ID of the token policy
you want to assign to the scope. You can get the tokenpolicyid from the output of the
create tokenpolicy command discussed in the previous section. This is the com-
mand for creating a scope:

acm create scope -name:StringServiceScope
 -appliesto:http://localhost/processstring
 -tokenpolicyid:tp_4cb597317c2f42cba0407a91c2553324

When you’re using the configuration browser, you won’t need to provide the token
policy ID—you’ll be able to choose it from the drop-down list. You can associate a pol-
icy to a namespace by creating a scope, as shown in figure 17.6.

 There are several advanced uses for scopes that we won’t go into in this chapter.
These include managing a large number of service endpoints with a few scopes, and
chaining namespaces together for delegation.

Figure 17.5 You’ll need to create a token
policy. This will determine the lifetime of
your tokens, and the key that will be used to
sign your ACS tokens.

Figure 17.6 It’s easy to create a scope. A
scope acts as a container for a set of rules for
your service. It also associates a token policy
with the service. You’ll need to define the URI
for the service the scope applies to.

395Example: A return to our string-reversing service
RULES

Rules are the heart of the ACS system. When a token is created by ACS, the rules for
the related scope are executed. This is the process that allows you to transform the
consumer’s request into something your application can act on. Rules can also be
used to create claims out of thin air, and put them in the resulting token.

 For example, suppose you wanted to place a claim in the token that represents the
consumer’s customerid, to make it easier for your service to identify the account the
request is related to. You could create a rule that says, “If this is for issuer MaineRever-
sal, add a claim called customerid with a value of 31415.” Figure 17.7 shows how you
could create this rule.

 Another rule you could use would assign a new role value based on mappings
you’ve worked out with the customer. Perhaps their system tracks their users with a
role of ServiceManager—this would be a group the user belongs to at Maine Reversal.
Your system doesn’t know that role name, and you don’t want to add all of your cus-
tomers’ role types to your system—that would get very complex very quickly. The rule
in figure 17.8 creates the roles claim with the manager value.

Figure 17.7 Creating
a rule to insert
a claim that includes
the customer’s
customerid. In this
case, you’re relying
on the issuer
of the inbound
request to know
which customer it is.

Figure 17.8 Creating
a rule that substitutes
the inbound roles
claim for a new one.
Using this rule, you
can map the
ServiceManager role
value that your system
doesn’t know to one
your system does
know—manager.

396 CHAPTER 17 Connecting in the cloud with AppFabric
You can then create a rule that finds a claim called roles with a value of Sales-
Manager, and replaces it with a claim called roles that has a value of manager. In this
way you’ve moved the customer configuration and mapping out of your service and
into the authorization service where it belongs.

 Creating a rule at the command line is a little more complex than using the config-
uration browser:

acm create rule -name:MaineReversalMap
➥ -scopeid:scp_e7875331c2b880607d5709493eb2751bb7e47044
➥ -inclaimissuerid:iss_6337bf129f06f607dac6a0f6be75a3c287b7c7fa
➥ -inclaimtype:roles -inclaimvalue:ServiceManager
➥ -outclaimtype:roles -outclaimvalue:manager

To find the IDs of the scope and issuer, you can use these commands: acm getall
scope and acm getall issuer.

17.3.8 Putting it all together

You’ve come a long way in stopping illicit use of your service. Now you can control
who uses it and how they use it. You’ve updated your service to consume tokens,
you’ve updated the client to submit tokens with service requests, and you’ve prepared
the ACS service with your configuration.

 How does this all work? In
this simple scenario, the client
requests an access token from
ACS, providing its secret key and
issuer name. ACS validates this
and creates a token, using the
scope rules you set up to create
claims in the new token. The cli-
ent then attaches the token to
the message in the authorization
header.

 Figure 17.9 should look famil-
iar; it’s much like the DMV exam-
ple (see figure 17.1), but it shows
the technical actors and how they
interact.

 When your service finally receives the message, you’ll grab the token from the
header and verify it. You want to make sure that it’s valid and hasn’t been tampered
with. Once you trust it, you can make decisions on what to do.

 In our example, you can take the customerid value and verify that they’re still a
paying customer, and if so, respond to their request. You can stop using the token at
this point and respond like normal, or you can shred the token and use the claims
throughout the application.

REST service
(protected resource) ClientSend request with token

Receive token

Use rules to map claims

Configure ACS Send claims

ACS
(trusted authority)

1
5

2

3

4

Figure 17.9 How the three actors work together to
securely access a REST service. The service configures
ACS; the client asks for a token; ACS creates a token,
based on rules; and then the client submits this token
with its service request.

397Connecting with the Service Bus
 If you were protecting an ASP.NET website instead of a REST-based WCF service, you
could take those claims, put them in a class that implements IPrincipal, and use the
class to make role decisions throughout your code.

 We’ve finished a quick lap around ACS. ACS’s sibling is the Service Bus, which will
let us connect anything to anywhere, with just a little bit of WCF and cloud magic.

17.4 Connecting with the Service Bus
The second major piece of Windows Azure platform AppFabric is the Service Bus. As
adoption of service-oriented architecture (SOA) increases, developers are seeking bet-
ter ways of connecting their services together. At the simplest level, the Service Bus
does this for any service out there. It makes it easy for services to connect to each
other and for consumers to connect to services.

 In this section, we’re going to look into what the Service Bus is, why you’d use a
bus, and, most importantly, how you can connect your services to it. You’ll see how
easy it is to use the Service Bus.

17.4.1 What is a Service Bus?

Enterprise service buses (ESBs) have been around for years, and they’ve grown out of
the SOA movement. As services became popular, and as the population of services at
companies increased, companies found it harder and harder to maintain the infra-
structure. The services and clients became so tightly coupled that the infrastructure
became very brittle. This was the exact problem services were created to avoid. ESBs
evolved to help fix these problems.

ESBs have several common characteristics, all geared toward building a more
dynamic and flexible service environment:

� ESBs provide a service registry—Developers and dynamic clients needed ways to
find available services, and to retrieve the contract and usage information they
needed to consume them.

� ESBs provide a way to name services—This involves creating a namespace around
services so there isn’t a conflict in the service names and the message types
defined.

� ESBs provide some infrastructure for security—Generally, this includes a way to allow
or deny people access to a service, and a way to specify what they’re allowed to
do on that service.

� ESBs provide the “bus” part of ESB—The bus provides a way for the messages to
move around from client to service, and back. The important part of the bus is
the instrumentation in the endpoints that allows IT to manage the endpoint. IT
can track the SLA of the endpoint, performance, and faults on the service.

� ESBs commonly provide service orchestration—Orchestration is the concept of com-
posing several services together into a bigger service that performs some busi-
ness process.

398 CHAPTER 17 Connecting in the cloud with AppFabric
A common model for ESBs is
shown in figure 17.10. This is simi-
lar to the typical n-tier architec-
ture model, where each tier relies
on the abstractions provided by
the layer below it.

 The orchestration has become
not only a way to have lower-level
services work together, but it also
provides a layer of indirection on
top of those services. In the
orchestration layer you can route
messages based on content, pol-
icy, or even service version. This is
important as you connect services
together, and as they mature.

17.4.2 Why an ESB is a good idea in the cloud

The problem for ESBs is that they usually only connect internal services and internal
clients together. It’s hard to publish a service you don’t control to your own bus. Exter-
nal dependencies end up getting wrapped in a service you own and published to your
ESB as an internal service. Although this avoids the first problem of attaching external
services to your ESB, it introduces a new problem, which is yet more code to manage
and secure.

 If you wanted to expose a service to several vendors, or if you wanted a field appli-
cation to connect to an internal service, you’d have to resort to all sorts of firewall
tricks. You’d have to open ports, provision DNS, and do many other things that give IT
managers nightmares. Another challenge is the effort it takes to make sure that an
outside application can always connect and use your service.

 To go one step farther, it’s an even
bigger challenge to connect two outside
clients together. The problem comes
down to the variety of firewalls, NATs,
proxies, and other network shenanigans
that make point-to-point communica-
tion difficult. For example, figure 17.11
might represent the layers between your
local software and the services it’s call-
ing across the internet.
 Take an instant messaging client, for
example. When the client starts up, and
the user logs in, the client creates an

Checkout
service

Inventory
service

Shipping
service

Billing
service

Business
services

Service
orchestration

Functional
services

Figure 17.10 Many ESBs support a three-tier concept.
The lowest tier consists of functional, discrete services.
These services are composed together in the service
orchestration layer, and are exposed to provide a
comprehensive business service.

Client BClient A

PC
firewall

PC
firewall

Network
firewall

Network
firewall

Proxy

Figure 17.11 Modern networks provide a great
number of barriers to easy point-to-point
communication. Many computers these days have
a local firewall, with one or more firewalls on their
network. There are also proxies, NATs, and other
devices in the way making it hard to connect in an
old-fashioned, direct way.

399Connecting with the Service Bus
outbound, bidirectional connection to the chat service somewhere. This is always
allowed across the network (unless the firewall is configured to explicitly block that
type of client), no matter where you are. An outbound connection, especially over
port 80 (where HTTP lives) is rarely a problem. Inbound connections, on the other
hand, are almost always a problem.

 Both clients have these outbound connections, and they’re used for signaling and
commanding. If client A wants to chat with client B, a message is sent up to the service.
The service uses the service registry to figure out where client B’s inbound connection
is in the server farm, and sends the request to chat down client B’s link. If client B
accepts the invitation to chat, a new connection is set up between the two clients with
a predetermined rendezvous port. In this sense, the two clients are bouncing mes-
sages off a satellite in order to always connect, because a direct connection, especially
an inbound one, wouldn’t be possible. This strategy gets the traffic through a multi-
tude of firewalls—on the PC, on the servers, on the network—on both sides of the
conversation.

 There is also NATing (network address translation) going on. A network will use pri-
vate IP addresses internally (usually in the 10.x.x.x range), and will only translate those
to an IP address that works on the internet if the traffic needs to go outside the network.
It’s quite common for all traffic coming from one company or office to have the same
source IP address, even if there are hundreds of actual computers. The NAT device
keeps a list of which internal addresses are communicating with the outside world. This
list uses the TCP session ID (which is buried in each network message) to route inbound
traffic back to the individual computer that asked for it.

 The “bounce it off a satellite” approach bypasses this problem by having both clients
dialing out to the service. Figure 17.12 illustrates how this works.

 The Service Bus is here to give you all of that easy messaging goodness without all
of the work. Imagine if Skype or Yahoo Messenger could just write a cool application
that helped people communicate, instead of spending all of that hard work and time
figuring out how to always connect with someone, no matter where they are.

 The first step in connecting is knowing who you can connect with, and where they
are. To determine this, you need to register your service on the Service Bus.

Service bus Registry

Bi
di

re
ct

io
na

l o
ut

bo
un

d
co

nn
ec

tio
n

Bidirectional outbound connection

Client A Client B

Relay connection

Figure 17.12 Any client can communicate with any other
client (which may be a service) from anywhere, on any
network, by using the relay bindings with the Service Bus.
Each client first registers with the bus so it knows where
they’re connected. Then when client A wants to connect
with client B, they can use the registry to find each other.

400 CHAPTER 17 Connecting in the cloud with AppFabric
17.5 Example: Listening for messages on the bus
Previously in this chapter, as you were configuring ACS, you had to create a namespace.
That namespace held configuration for the services you wanted to protect with ACS.
Now you’ll use that same namespace to register and manage your service on the bus.

 Almost all of the magic of the Service Bus is embedded in the new WCF service
bindings that are shipped in the AppFabric SDK. All of these bindings start with a pro-
tocol identifier of sb (you’re probably familiar with http and others). The binding
names also almost always have the word relay in them, to indicate that you’ll be relay-
ing messages through the Service Bus to their destination.

17.5.1 Connecting the service to the bus

Changing your application to listen for messages from the bus instead of the HTTP
endpoint is easy. You need to change the binding and address information to point to
the bus.

 We’ve moved the configuration of the service from code to the app.config file to
make these changes easier, and you can see these changes in the Service Bus sample
code for this chapter. Two things still need to be set up. You need to configure the
address and binding information, and you need to configure the service for authenti-
cation to the bus.

 First, in the configuration, you need to change the address of the endpoint to your
namespace on the bus. For this example, you should change it from http://localhost/
processstring to sb://stringreversalinc.servicebus.windows.net/processtring. This
change tells WCF to use the Service Bus relay bindings, and that the service you’re
publishing should be registered in the stringreversalinc namespace.

<endpoint address=
"sb://stringreversalinc.servicebus.windows.net/processtring"
behaviorConfiguration="sharedSecretClientCredentials"
binding="netTcpRelayBinding"
contract="StringReversalLibrary.Contract.IReverseString" />

Your service also has to authenticate to the Service Bus when it starts up and registers
with the bus. You use ACS to do this. In this example, you can use the simple shared
secret we used earlier in this chapter. This will attach the credentials (essentially a
username and password) to your request to connect to the Service Bus:

<behavior name="sharedSecretClientCredentials">
 <transportClientEndpointBehavior credentialType="SharedSecret">
 <clientCredentials>
 <sharedSecret issuerName="owner"
 ➥ issuerSecret="MZuYNde3ZOzUJxVKo62kmWoFSlzEZEaKai5Fktlt3pQ=" />
 </clientCredentials>
 </transportClientEndpointBehavior>
</behavior>

This shared secret behavior that you attach to your service will authenticate to the bus
with your issuer name and signing key automatically.

http://localhost/processstring

401Example: Listening for messages on the bus
 Once you make these changes, you can run the service and it’ll start up, authenti-
cate, and start listening for messages coming from the bus. You’ll then need to per-
form similar actions on the client.

17.5.2 Connecting to the service

In the previous section, we looked at what you had to do to connect a service to the
Service Bus. You had to change the bindings to point to the bus and update the
address. You also had to add some authentication so that the bus knew you were
allowed to use your namespace.

 You now need to follow the same steps to change the app.config for the client. You
need to change the client binding so it’s sending messages to the bus. For this example,
you can name your endpoint SBRelayEndpoint, with the same address the service used.

<client>
 <endpoint
 name="SBRelayEndpoint"
 address=
"sb://stringreversalinc.servicebus.windows.net/processtring"
 binding="netTcpRelayBinding"
 contract="StringReversalLibrary.Contract.IReverseString"
 behaviorConfiguration="sharedSecretClientCredentials"
 />
</client>

The client is going to have to authenticate to the Service Bus as well—you can config-
ure it to use a shared secret. Use the Maine Reversal issuer from section 17.3.7 of this
chapter. Keep in mind that there are two endpoints: one for the ACS service, and one
for the Service Bus. They don’t share issuers. You can configure the credentials by
changing the behavior of the service in the app.config file:

<behavior name="sharedSecretClientCredentials">
 <transportClientEndpointBehavior credentialType="SharedSecret">
 <clientCredentials>
 <sharedSecret issuerName=" MaineReversal"
 ➥ issuerSecret=" ltSsoI5l+8DzLSmvsVOhOmflAsKHBYrGeCR8KtCI1eE=" />
 </clientCredentials>
 </transportClientEndpointBehavior>
</behavior>

Now the client can call your service from anywhere and always be able to connect to it.
This makes it easy to provision new customers. In the old, direct method, you had to
reconfigure the firewalls to let the new customer through. Now you can point them to
the Service Bus address and give them the credentials they’ll need.

 The binding we used in this example is based on TCP, which is one of the fastest
bindings you can use in WCF. It adds the relay capabilities to allow us to message
through the bus instead of directly. There are other bindings available that support
using the relay.

 Now that we’ve covered what AppFabric can do today, let’s consider what its future
might hold.

402 CHAPTER 17 Connecting in the cloud with AppFabric
17.6 The future of AppFabric
We normally don’t talk about futures in a book because it’s entirely possible that prior-
ities will shift and particular features will never ship. The team has been open about
what they consider their next steps, but any of this could change, so don’t base impor-
tant strategy on unofficial announcements.

 With that said, here are a couple of current goals:

� Extending OAuth for web identity—The ACS team wants to extend its use of OAuth
and SWT to include common web identity platforms. These are identities on the
web that people commonly have, instead of traditional enterprise identities
from Active Directory. It will be possible for a user to choose to log into a site
not just with an ACS-provisioned issuer ID, or a SAML token, but also with their
Google, Yahoo!, and Live ID accounts. This is accomplished by ACS federating
with those directories with the updated OAuth protocols. This will also include
Facebook and any OpenID provider. This is exciting for people who are build-
ing consumer-centric applications.

� Support for all WS-* protocols—Right now you can only protect REST services with
ACS, and the ACS team wants to extend support for SOAP-based services as well.
Once they have support for WS-*, they’ll have support for WS-Federation and
WS-Trust, which makes it easier to federate enterprise identities. This change
will also give them support for CardSpace, which is Windows’ identity selector
for claims-based authentication systems.

17.7 Summary
This chapter gave you a tour of the Windows Azure platform AppFabric. We looked at
how it’s a cousin of Windows Server AppFabric, and how maybe over time they’ll merge.

 The first component of AppFabric we looked at was ACS. ACS’s primary concern is
securing REST-based services, and it does this with the OAuth and SWT open stan-
dards. ACS makes it easy to federate in other token protocols, like SAML, and makes it
easy to transform tokens from other parties into a form that your application can con-
sume. You can configure ACS with either the ACM command-line application, or the
ACS configuration browser. Both applications use the underlying management REST
service, which you can also use directly if you want.

 We looked at how a client first authenticates with ACS to prove who they are, and
then ACS gives them a token to use to gain access to the service. This removes the con-
cern of authentication from the application, which in turn simplifies the codebase,
and makes it easier to adjust to new rules as they evolve.

 The second component of AppFabric we looked at was the Service Bus. The Ser-
vice Bus is a migration of a common enterprise service bus into the cloud. The Service
Bus’s goal is to make it easy for consumers and services to communicate with each
other, no matter where they are or how they’re connected.

403Summary
 We adjusted our example to use a netTCP binding, but also to relay the messages
through the cloud to bypass any firewalls or proxies that might be in the way. You had
to make a few adjustments on the service and the client to make this possible. Both
sides have to authenticate to ACS before they connect to the bus—this is how you
secure your service when it’s connected to the bus.

 Although this was a simple chapter designed to help you get a feel for AppFabric,
we hope that you’re comfortable enough with the basics to know when it might make
sense to leverage AppFabric. You should be prepared enough to explore on your own
and maybe dive deep with a dedicated book on the topic.

 The next chapter will zoom out from all of this detail and help you use the diag-
nostics manager to understand what your applications are doing. The diagnostics
manager will help you determine what’s happening, and the service management API
will help you do something about it.

Running a healthy
service in the cloud
Building an application and deploying it to Azure are just the first steps in a hope-
fully long application lifecycle. For the rest of its life, the application will be in
operation mode, being cared for by loving IT professionals and support develop-
ers. The focus shifts from writing quality code to running the application and
keeping it healthy. Many tools and techniques are out there to help you manage
your infrastructure.

 What healthy means can be different for every application. It might be a measure
of how many simultaneous users there are, or how many transactions per second

This chapter covers
� Getting to know the Windows Azure Diagnostics

platform

� Using logging to determine what’s happening
with your service

� Using the service management APIs

� Making your service self-aware with logging and
service management
404

405Diagnostics in the cloud
are processed, or how fast a response can be returned to the service caller. In many
cases, it won’t be just one metric, but a series of metrics. You have to decide what
you’re going to measure to determine a healthy state, and what those measurements
must be to be considered acceptable. You must make sure these metrics are reason-
able and actionable. A metric that demands that the site be as fast as possible isn’t
really measurable, and it’s nearly impossible to test for and fix an issue phrased like
that. Better to define the metric as an average response time for a standard request.

 To keep your application healthy, you need to instrument and gather diagnostic
data. In this chapter, we’re going to discuss how you perform diagnostics in the cloud
and what tools Azure provides to remediate any issues or under-supply conditions in
your system.

18.1 Diagnostics in the cloud
At some point you might need to debug your code, or you’ll want to judge how
healthy your application is while it’s running in the cloud. We don’t know about you,
but the more experienced we get with writing code, the more we know that our code
is less than perfect. We’ve drastically reduced the amount of debugging we need to do
by using test-driven development (TDD), but we still need to fire up the debugger
once in a while.

 Debugging locally with the SDK is easy, but once you move to the cloud you can’t
debug at all; instead, you need to log the behavior of the system. For logging, you can
use either the infrastructure that Azure provides, or you can use your own logging
framework. Logging, like in traditional environments, is going to be your primary
mechanism for collecting information about what’s happening with your application.

18.1.1 Using Azure Diagnostics to find what’s wrong

Logs are handy. They help you find where the problem is, and can act as the flight
data recorder for your system. They come in handy when your system has completely
burned down, fallen over, and sunk into the swamp. They also come in handy when
the worst hasn’t happened, and you just want to know a little bit more about the
behavior of the system as it’s running. You can use logs to analyze how your system is
performing, and to understand better how it’s behaving. This information can be crit-
ical when you’re trying to determine when to scale the system, or how to improve the
efficiency of your code.

 The drawback with logging is that hindsight is 20/20. It’s obvious, after the crash,
that you should’ve enabled logging or that you should’ve logged a particular segment
of code. As you write your application, it’s important to consider instrumentation as
an aspect of your design.

 Logging is much more than just remote debugging, 1980s-style. It’s about gather-
ing a broad set of data at runtime that you can use for a variety of purposes; debug-
ging is one of those purposes.

406 CHAPTER 18 Running a healthy service in the cloud
18.1.2 Challenges with troubleshooting in the cloud

When you’re trying to diagnose a traditional on-premises system, you have easy access
to the machine and the log sources on it. You can usually connect to the machine with
a remote desktop and get your hands on it. You can parse through log files, both those
created by Windows and those created by your application. You can monitor the health
of the system by using Performance Monitor, and tap into any source of information
on the server. During troubleshooting, it’s common to leverage several tools on the
server itself to slice and dice the mountain of data to figure out what’s gone wrong.

 You simply can’t do this in the cloud. You can’t log in to the server directly, and you
have no way of running remote analysis tools. But the bigger challenge in the cloud is
the dynamic nature of your infrastructure. On-premises, you have access to a static pool
of servers. You know which server was doing what at all times. In the cloud, you don’t
have this ability. Workloads can be moved around; servers can be created and destroyed
at will. And you aren’t trying to diagnose the application on one server, but across a mul-
titude of servers, collating and connecting information from all the different sources.
The number of servers used in cloud applications can swamp most diagnostic analysis
tools. The shear amount of data available can cause bottlenecks in your system.

 For example, a typical web user, as they browse your website and decide to check
out, can be bounced from instance to instance because of the load balancer. How do
you truly find out the load on your system or the cause for the slow response while
they were checking out of your site? You need access to all the data that’s available on
terrestrial servers and you need the data collated for you.

 You also need close control over the diagnostic data producers. You need an easy way
to dial the level of information from debug to critical. While you’re testing your sys-
tems, you need all the data, and you need to know that the additional load it places on
the system is acceptable. During production, you want to know only about the most crit-
ical issues, and you want to minimize the impact of these issues on system performance.

 For all these reasons, the Windows Azure Diagnostics platform sits on top of what is
already available in Windows. The diagnostics team at Microsoft has extended and
plugged in to the existing platform, making it easy for you to learn, and easy to find
the information you need.

18.2 Diagnostics in the cloud is just like normal (almost)
With the challenges of diagnostics at cloud-scale, it’s amazing that the solution is so
simple and elegant. Microsoft chose to keep everything that you’re used to in its place.
Every API, tool, log, and data source is the same way it was, which keeps the data
sources known and well documented. The diagnostics team provides a small process
called MonAgentHost.exe that’s started on your instances.

 The MonAgentHost process is started automatically, and it acts as your agent on the
box. It knows how to tap into all the sources, and it knows how to merge the data and
move it to the correct locations so you can analyze it. You can configure the process on
the fly without having to restart the host it’s running on. This is critical. You don’t

https://management.core.windows.net[CA
https://management.core.windows.net
https://management.core.windows.net
https://management.core.windows.net
https://management.core.windows.net
https://management.core.windows.net

407Diagnostics in the cloud is just like normal (almost)
want to have to take down a web role instance just to dial up the amount of diagnostic
information you’re collecting. You can control data collection across all your instances
with a simple API. All the moving parts of the process are shown in figure 18.1. Your
role instance must be running in full-trust mode to be able to run the diagnostic
agent. If your role instance is running in partial trust, it won’t be able to start.

 As the developer, you’re always in control of what’s being collected and when it’s
collected. You can communicate with MonAgentHost by submitting a configuration
change to the process. When you submit the change, the process reloads and starts
executing your new commands.

18.2.1 Managing event sources

The local diagnostic agent can find and access any of the normal Windows diagnostic
sources; then it moves and collates the data into Windows Azure storage. The agent
can even handle full memory dumps in the case of an unhandled exception in one of
your processes.

 You must configure the agent to have access to a cloud storage account. The agent
will place all your data in this account. Depending on the source of the data, it’ll
either place the information in BLOB storage (if the source is a traditional log file), or
it’ll put the information in a table.

 Some information is stored in a table because of the nature of the data collection
activity. Consider when you’re collecting data from Performance Monitor. This data is
usually stored in a special file with the extension .blg. Although this file could be cre-
ated and stored in BLOB storage, you would have the hurdle of merging several of
these files to make any sense of the data (and the information isn’t easily viewed in
Notepad). You generally want to query that data. For example, you might want to find
out what the CPU and memory pressure on the server were for a given time, when a
particular request failed to process.

 Table 18.1 shows what the most common sources of diagnostic information are,
and where the agent stores the data after it’s collected. We’ll discuss how to configure
the sources, logs, and the (tantalizingly named) arbitrary files in later sections.

Table 18.1 Diagnostic data sources

Data source Default Destination Configuration

Arbitrary files Disabled BLOB DirectoryConfiguration class

Crash dumps Disabled BLOB CrashDumps class

Your code

Windows
logs

IIS
logs

IIS FR
logs

Perf
counters

Crash
dumps

Trace
listener

Windows server

MonAgentHost
Running
config

Stored
config

Buffer Storage
account

Figure 18.1 The MonAgentHost.exe
process gathers, buffers, and transfers
many different sources of diagnostic
data on your behalf. It’s the agent we’ll
be focusing on in this section.

https://management.core.windows.net
https://management.core.windows.net
http://code.msdn.microsoft.com/windowsazuresamples
http://code.msdn.microsoft.com/windowsazuresamples

408 CHAPTER 18 Running a healthy service in the cloud
The agent doesn’t just take the files and upload them to storage. The agent can also
configure the underlying sources to meet your needs. You can use the agent to start
collecting performance data, and then turn the source off when you don’t need it any-
more. You do all this through configuration.

18.2.2 It’s not just for diagnostics

We’ve been focusing pretty heavily on the debugging or diagnostic nature of the Win-
dows Azure Diagnostics platform. Diagnostics is the primary goal of the platform, but
you should think of it as a pump of information about what your application is doing.
Now that you no longer have to manage infrastructure, you can focus your attention
on managing the application much more than you have in the past.

 Consider some of the business possibilities you might need to provide for, and as
you continue to read this chapter, think about how the diagnostic tools can make
some of these scenarios possible.

 There are the obvious scenarios of troubleshooting performance and finding out
how to tune the system. The common process is that you drive a load on the system and
monitor all the characteristics of the system to find out how it responds. This is a good
way to find the limits of your code, and to perform A/B tests on your changes. During
an A/B test, you test two possible options to see which leads to the better outcome.

 Other scenarios aren’t technical in nature at all. Perhaps your system is a multi-
tenant system and you need to find out how much work each customer does. In a med-
ical imaging system, you’d want to know how many images are being analyzed and
charge a flat fee per image. You could use the diagnostic system to safely log a new image
event, and then once a day move that to Azure storage to feed into your billing system.

 Maybe in this same scenario you need a rock-solid audit that tells you exactly who’s
accessed each medical record so you can comply with industry and government regu-
lations. The diagnostic system provides a clean way to handle these scenarios.

 An even more common scenario might be that you want an analysis of the visitors
to your application and their behaviors while they’re using your site. Some advanced

Trace logs Enabled Azure table web.config trace listener

Diagnostic infrastruc-
ture logs

Enabled Azure table web.config trace listener

IIS failed request logs Disabled BLOB web.config traceFailedRequests

IIS logs Enabled BLOB web.config trace listener

Performance counters Disabled Azure table PerformanceCounterConfiguration
class

Windows event logs Disabled Azure table WindowsEventLogsBufferConfiguration
class

Table 18.1 Diagnostic data sources

Data source Default Destination Configuration

(continued)

409Configuring the diagnostic agent
e-commerce platforms know how their customers shop. With the mountains of data
collected over the years, they can predict that 80 percent of customers in a certain sce-
nario will complete the purchase. Armed with this data, they can respond to a user’s
behavior and provide a way to increase the likelihood that they’ll make a purchase.
Perhaps this is a timely invitation to a one-on-one chat with a trained customer service
person to help them through the process. The diagnostics engine can help your appli-
cation monitor the key aspects of the user and the checkout process, providing feed-
back to the e-commerce system to improve business. This is the twenty-first-century
version of a salesperson in a store asking if they can help you find anything.

 To achieve all of these feats of science with the diagnostic agent, you need to learn
how to configure and use it properly.

18.3 Configuring the diagnostic agent
If you’re writing your code in Visual Studio, the default Azure project templates
include code that automatically starts the diagnostic agent, inserts a listener for the
agent in the web.config file, and configures the agent with a default configuration.

 You can see this code in the OnStart() method in the WebRole.cs file.

public override bool OnStart()
{
 DiagnosticMonitor.Start("DiagnosticsConnectionString");
 RoleEnvironment.Changing += RoleEnvironmentChanging;
 return base.OnStart();
}

The agent starts q with the default configuration, all in one line. The line also
points to a connection string in the service configuration that provides access to the
Azure storage account you want the data to be transferred to. If you’re running in the
development fabric on your desktop computer, you can configure it with the well-
known development storage connection string UseDevelopmentStorage=true. This
string provides all the data necessary to connect with the local instance of develop-
ment storage.

 You also need to create a trace listener for the diagnostic agent. The trace listener
allows you to write to the Azure trace log in your code. Create a trace listener by add-
ing the following lines in your web.config. If you’re using a standard template, this
code is probably already included.

<system.diagnostics>
 <trace>
 <listeners>
 <add type="Microsoft.WindowsAzure.Diagnostics
 ➥ .DiagnosticMonitorTraceListener,
 ➥ Microsoft.WindowsAzure.Diagnostics,
 ➥ Version=1.0.0.0, Culture=neutral,
 ➥ PublicKeyToken=31bf3856ad364e35"
 ➥ name="AzureDiagnostics">
 <filter type="" />
 </add>

Starts
diagnostic
agent

q

410 CHAPTER 18 Running a healthy service in the cloud
 </listeners>
 </trace>
</system.diagnostics>

After you’ve set up the trace listener, you can use the trace methods to send informa-
tion to any trace listeners. When you use them, set a category for the log entry. The
category will help you filter and find the right data later on. You should differentiate
between critical data that you’ll always want and verbose logging data that you’ll want
only when you’re debugging an issue. You can use any string for the trace category you
want, but be careful and stick to a standard set of categories for your project. If the cat-
egories vary too much (for example, you have critical, crit, and important), it’ll be too
hard to find the data you’re looking for. To standardize on log levels, you can use the
enumerated type LogLevel in Microsoft.WindowsAzure.Diagnostics. To write to
the trace log, use a line like one of the following:

using System.Diagnostics;

System.Diagnostics.Trace.WriteLine(string.Format("Page loaded on {0}",
➥ System.DateTime.Now, "Information");

System.Diagnostics.Trace.WriteLine("Failed to connect to database. ",
➥ "Critical");

Only people who have access to your trace information using the diagnostics API will
be able to see the log output. That being said, we don’t recommend exposing sensitive
or personal information in the log. Instead of listing a person’s social security number,
refer to it in an indirect manner, perhaps by logging the primary key in the customer

Figure 18.2 When writing to the trace channel, the entries are stored by the Windows Azure
diagnostic trace listener to the Azure log, which can then be gathered and stored in your storage
account for analysis. The trace output is also displayed in the dev fabric UI during development.

411Configuring the diagnostic agent
table. That way, if you need the social security number, you can look it up easily, but it
won’t be left out in plain text for someone to see.

 Another benefit of using trace is that the trace output appears in the dev fabric UI,
like in figure 18.2.

 At a simple level, this is all you need to start the agent and start collecting the most
common data. The basic diagnostic setup is almost done for you out of the box
because there’s so much default configuration that comes with it.

18.3.1 Default configuration

When the diagnostic agent is first started, it has a default configuration. The default
configuration collects the Windows Azure trace, diagnostic infrastructure logs, and IIS
7.0 logs automatically. These are the most common sources you’re likely to care about
in most situations.

 When you’re configuring the
agent, you’ll probably follow a com-
mon flow. You’ll grab the current
running configuration (or a default
configuration) from the agent,
adjust it to your purposes, and then
restart the agent. This configuration
workflow is shown in figure 18.3.

 By default, the agent buffers about 4 GB of data locally, and ages out data automat-
ically when the limit is reached. You can change these settings if you want, but most
people leave them as is and just transfer the data to storage for long-term keeping.

 Although the agent ages out data locally to the role instance, the retention of data
after it’s moved to Azure storage is up to you. You can keep it there forever, dump it
periodically, or download it to a local disk. After it’s been transferred to your account,
the diagnostic agent doesn’t touch your data again. The data will just keep piling up if
you let it.

 In the next few sections, we’ll look at some of the common configuration scenar-
ios, including how to filter the log for the data you’re interested in before it’s
uploaded to storage.

18.3.2 Diagnostic host configuration

You can change the configuration for the agent with code that’s running in the role
that’s collecting data, code that’s in another role, or code that’s running outside
Azure (perhaps a management station in your data center).

CHANGING THE CONFIGURATION IN A ROLE

There will be times when you want to change the configuration of the diagnostic
agent from within the role the agent is running in. You’ll most likely want to do this
during an OnStart event, while an instance for your role is starting up. You can
change the configuration at any time, but you’ll probably want to change it during

G A S
Grab the config Adjust the config Start the agent

Figure 18.3 Use the GAS process to configure and
work with the diagnostic agent. Grab the config,
adjust the config, and then start the agent.
Sometimes you’ll grab the default config and
sometimes the running config.

412 CHAPTER 18 Running a healthy service in the cloud
startup. The following listing shows how to change the configuration during the
OnStart method for the role instance.

using Microsoft.WindowsAzure.Diagnostics;

public override bool OnStart()
{
 var config = DiagnosticMonitor.GetDefaultInitialConfiguration();

 config.PerformanceCounters.DataSources.Add(
 new PerformanceCounterConfiguration()
 {
 CounterSpecifier = @"\Memory\Available MBytes",
 SampleRate = TimeSpan.FromSeconds(5.0)
 });

config.PerformanceCounters.ScheduledTransferPeriod =
➥ TimeSpan.FromMinutes(1.0);

 DiagnosticMonitor.Start("DiagnosticsConnectionString", config);

 return base.OnStart();
}

The first step to change the configuration is to grab the default configuration q from
the diagnostic agent manager. This is a static method and it gives you a common base-
line to start building up the configuration you want running.

 In our sample, we’re adding a performance counter called \Memory\Available
MBytes w. The CounterSpecifier property is the path to the performance counter.
You can easily find performance counter paths if you use the Performance Monitor, as
shown in figure 18.4.

 Browse to the counter you want to track to find the specifier (which is like a file
path) in the corner. Tell the agent to sample that performance counter every second
e, using the PerformanceCounterConfiguration class. Each data source the agent
has access to has a configuration class. For each piece of data you want collected, you
need to create the right type of configuration object, and add it to the matching con-
figuration collection, which in this case is the PerformanceCounterConfiguration
collection.

 You also want to aggressively upload the performance counter data to Azure stor-
age. Usually this value is set to 20 minutes or longer, but in this case you probably
don’t want to wait 20 minutes to see whether we’re telling you the truth, so set it to
once a minute r. Each data source will have its own data sources collection and its
own transfer configuration. You’ll be able to transfer different data sources at differ-
ent intervals. For example, you could transfer the IIS logs once a day, and transfer the
performance counters every 5 minutes.

Listing 18.1 Changing the configuration in a role at runtime

Grabs the default
configuration

q

Tracks the amount of
available memory

w

e
Sets sample rate of
performance counter

Sets scheduled
transfer timer

413Configuring the diagnostic agent
Finally, start the diagnostic agent. You need to provide it with the connection string to
the storage account that you want the data uploaded to, and the configuration object
you just built. The connection string defaults to the value DiagnosticsConnection-
String, which is an entry in the cloud service configuration file. When you’re playing
with this on your development machine, you set the value to UseDevelopment-
Storage=true, but in production you set it to be a connection string to your storage
account in the cloud.

 The data will be uploaded to different destinations, depending on the data source.
In the case of performance counters, the data will be uploaded to an Azure table
called WADPerformanceCountersTable, an example of which is shown in figure 18.5.

 Figure 18.5 shows the results of the performance counter configuration. The agent
tracked the available memory every 5 seconds, and stored that in the table. The
entries were uploaded from the role instance to the table every minute, based on the
configuration. The high order of the tick count is used as a partition key so that query-
ing by time, which is the most likely dimension to be queried on, is fast and easy.

 The RoleInstance column contains the name of the instance, to differentiate
entries across the different role instances. In this case, there’s only one instance.

 Tracking log data can generate a lot of data. To make all this data easier to use, the
diagnostic agent supports filters.

Figure 18.4 Finding the counter specifier using Performance Monitor. Browse to the
correct category on the left, choose a counter, and then click Add. You join the category
name and counter name with slashes, just like in a folder path. This example is showing
\Memory\Available Bytes.

414 CHAPTER 18 Running a healthy service in the cloud
FILTERING THE UPLOADED DATA

The amount of data collected by the diagnostic agent can become voluminous. Some-
times you might want to track a great deal of data, but when you’re trying to solve a
particular problem, you might want only a subset of data to look through. The diag-
nostic agent configuration provides for filtering of the results.

 The agent still collects all the data locally. The filter is applied only when the data
is uploaded to Azure storage. Filtering can narrow down the data you need to sift
through, make your transfers faster, and reduce your storage cost. You can set the fol-
lowing property to filter based on the log level of the records that you’ve specified:

transferOptions.LogLevelFilter = LogLevel.Error;

Figure 18.5 The performance counter data is stored in a table called WADPerformanceCountersTable.
In this example, we’re tracking the amount of available memory. You can see that the available memory
starts at 3,452 MB and slowly drops to 3,436 MB.

415Configuring the diagnostic agent
All the log data remains local to the agent; the agent uploads only the entries that
match or exceed the filter level you set.

CHANGING THE CONFIGURATION FROM OUTSIDE THE ROLE

Being able to change the configuration inside the role instance is nice, but you’ll
probably do this only during the startup of the instance. Dynamic changes to the con-
figuration are more likely to come from outside the role instance. The source of these
changes will probably be either an overseer role that’s monitoring the first role, or a
management application of sorts that’s running on your desktop.

 The agent’s configuration is stored in a file local to the role instance that’s running
the agent. By default, this file is polled every minute for any configuration changes.
You can change the polling interval if you want to by using the DiagnosticMonitor-
Configuration.ConfigurationChangePollInterval property. You can set this prop-
erty only from within the role the agent is running in.

 To update the configuration remotely, either from another role or from outside
Azure, you can use two classes. The DeploymentDiagnosticManager class is a factory that
returns diagnostic managers for any role you have access to. You can use this manager
to change the configuration remotely by using it to create RoleInstanceDiagnostic-
Manager objects. Each RoleInstanceDiagnosticManager object represents a collection
of diagnostic agents for a given role, one for each instance running in that role.

 After you’ve created this object, you can make changes to the configuration like
you did in the previous section. The trick is that you have to change the configuration
for each instance individually. The following listing shows how to update the configu-
ration for a running role.

using Microsoft.WindowsAzure.Diagnostics.Management;
using Microsoft.WindowsAzure.Diagnostics;
using Microsoft.WindowsAzure.ServiceRuntime;

DeploymentDiagnosticManager myDDM = new
➥ DeploymentDiagnosticManager(
➥ RoleEnvironment.GetConfigurationSettingValue
➥ ("DiagnosticsConnectionString"),
➥ txtDeploymentID.Text);

var myRoleInstanceDiagnosticManager =
 myDDM.GetRoleInstanceDiagnostic
 ➥ ManagersForRole("NinjaWebSite");

PerformanceCounterConfiguration CPUTime =
new PerformanceCounterConfiguration()
{
 CounterSpecifier = @"\Processor(_Total)
 ➥ \% Processor Time",
 SampleRate = TimeSpan.FromSeconds(5.0)
};

Listing 18.2 Remotely changing the configuration of a role’s diagnostic agent

Creates new
configuration

q

416 CHAPTER 18 Running a healthy service in the cloud
 foreach (var instanceAgent in myRoleInstanceDiagnosticManager)
 {
 DiagnosticMonitorConfiguration
 ➥ instanceConfiguration =
 ➥ instanceAgent
 .GetCurrentConfiguration();
 instanceConfiguration
 ➥ .PerformanceCounters.DataSources.Add(CPUTime);

 instanceAgent.SetCurrentConfiguration(instanceConfiguration);
 }

The first thing you do to update the configuration for a running role is get an
instance of the DeploymentDiagnosticManager for the deployment. One object over-
sees all the roles in your deployment. Give it a connection string to your storage
account for logging. This constructor doesn’t take a configuration element like the
DiagnosticsMonitor class does. You have to pass in a real connection string, or a real
connection. The code in listing 18.2 grabs the string out of the role configuration with
a call to GetConfigurationSettingValue.

 From there, you ask for a collection of RoleInstanceDiagnosticManager objects
for the particular role you want to work with. In this example, we’re changing the con-
figuration for the NinjaWebSite role. You’ll get one RoleInstanceDiagnosticManager
object for each instance that’s running the NinjaWebSite role.

 Next, you create the new part of the configuration you want to add to the agent q.
In this example, you’ll build another performance counter data source that will track
the percentage of CPU in use. Then you’ll iterate over your collection w and add the
new performance counter CPUTime to the current configuration e. This process is
different from that used when you’re changing the configuration in a role. Here you
want to add to the configuration, not completely replace it. Finally, you update the
configuration for that instance, which updates the configuration file for the diagnos-
tic agent. When the agent polls for a configuration change, it’ll pick up the changes
and recycle to load them.

 Figure 18.6 shows the results of the configuration changes that you’ve made.
 In this sample, we’ve put this code in the role, but this code would work running from

any application that’s running outside Azure as well. The only difference would be how
you provide the connection string to storage, and how you provide the deployment ID.

 We’ve looked at the standard data sources for Windows Azure diagnostics, but
there’s one hole remaining. What if you want to manage a diagnostic source that isn’t
on the official list? This situation is where the escape hatch called arbitrary diagnostics
sources comes into play.

18.3.3 The other data sources

Up until now, we’ve discussed how to configure a performance counter data source
and how to enable the trace listener in the web.config file. Now let’s look briefly at the
other data sources that are configured in similar ways.

w
Iterates over

instance agents

Adds new
performance
counters

e

417Configuring the diagnostic agent
CRASH DUMPS

Crash dumps are the log file of last resort. They aren’t really a log file, but a dump of
the status of the computer when a horrible problem has arisen. There are two types of
crash dumps. The normal dump includes a copy of all the memory on the machine.
The mini dump holds only the most important information, without a complete copy
of everything.

 If you’re running a web application, ASP.NET should handle any errors that
aren’t handled by your application (in code or in the global.asax). A crash dump
usually occurs only during a truly catastrophic error. When your code is running in a
worker role, without the soft embrace of ASP.NET, you’re likely to see these dumps
more often.

 Crash dump files are stored in the local data buffer and transferred with the com-
mon logs. You can choose which size dump you want by passing in true to the Enable-
Collection or EnableCollectionToDirectory method for a full dump and passing in
false for a mini dump.

Figure 18.6 You can change the configuration of the Windows Azure diagnostic agent running in
each instance quite easily. In this example, we added the % Processor Time performance counter
to the agent. You can do this remotely, even from outside Azure.

418 CHAPTER 18 Running a healthy service in the cloud
IIS FAILED REQUEST LOGS

The failed request logs for IIS are a new feature in IIS 7. IIS tracks log data for requests
as they come through, but keeps the data only if certain configurable conditions are
met. A condition for keeping the log data might be that a response takes too long to
complete the request. If the response is completed fast enough, then the log buffer is
flushed. You can configure how IIS manages this process in the tracing section of the
system.webServer part of your web.config. After you configure failed request tracing
for IIS in this way, the logs are collected with the rest of the data logs.

WINDOWS EVENT LOGS

Windows event logs can provide important clues to serious problems with your appli-
cations. Some applications create custom event log sources for their own logging. The
diagnostic agent in Azure can collect these logs and transfer them to storage for you.

 You need to subscribe to the event data that you want to receive using an XPath
expression. Because of the security profile your processes run on, you won’t be able to
read the security windows event log. If you add this log to your configuration, nothing
will be logged, and it won’t work correctly until you remove it.

 To capture Windows event logs, you can use the following expression:

diagConfig.WindowsEventLog.DataSources.Add("System!*");

This code grabs everything from the Windows System Event log, which is where you
usually want to start your investigations.

18.3.4 Arbitrary diagnostic sources

Windows Azure Diagnostics covers a lot of the diagnostic sources you might use to
troubleshoot an issue with your system. It covers IIS logs, performance counters, Win-
dows event logs, and several other things. Over time, you’ll probably devise your own
diagnostic source; maybe a log you’re creating that you need to track. Perhaps this is
custom billing data, or a compressed log of the images used in production, or it might
just be the output of a third-party logging framework you’ve chosen to use.

 The agent can transfer anything you want. All you need to do is get that data into a
file in a designated folder. When you configure the agent, you tell it which custom
directories you want it to monitor. You need to configure some local storage and then
write your log files to it.

 Each data source has a configuration class that you add to the agent’s configura-
tion, and custom log locations aren’t any different. We’ll use the DirectoryConfigu-
ration class to tell the agent to monitor a folder. You can set how large that directory
is allowed to become, as well as scheduled transfer characteristics, as shown in the fol-
lowing code:

DirectoryConfiguration specialLogsDC = new DirectoryConfiguration();

specialLogsDC.Path =
➥ RoleEnvironment.GetLocalResource("specialLogs").RootPath;

Source
directory

419Transferring diagnostic data
specialLogsDC.Container = "speciallogs";
instanceConfiguration.Directories
➥ .DataSources.Add(specialLogsDC);

Windows Azure Diagnostics is a powerful tool you can use to help troubleshoot and
diagnose problems. But it isn’t just for problems, as we’ve discussed; you can also use it
to help monitor the behavior of the system, or the actions of your users. Although Win-
dows Azure Diagnostics is wonderful, it’s only a source of data. You still need to analyze
the data to turn it into information, and then take action. Sometimes the action you
need to take is to change the configuration of the service model you’re running your
application in. For example, you might need to add some instances to respond to a
spike in traffic. Regardless of the result of your analysis, you’ll need to store the data
you collect in Azure storage to be able to use it. To do this, you use transfers.

18.4 Transferring diagnostic data
The diagnostic agent does a great job of collecting all the local data and storing it on
the machine it’s running on. But if the diagnostic information is never moved to
Azure storage, it won’t be any good to anyone. This is where transfers come into play.

 There are two types of transfers, one of which you have already seen in play. We’ve
already talked about the scheduled transfer, which sets up a timer and transfers the
related data on a regular basis to your storage account. Each data source category has
its own transfer schedule. You can transfer performance counter data at a different
rate than you transfer the IIS logs.

 The second type of transfer is an on-demand transfer. You usually perform an on-
demand transfer when you have a special request of the data.

 Let’s look at each of these kinds of data transfers in more detail.

18.4.1 Scheduled transfer

In our sample in listing 18.1, a scheduled transfer of the performance counter data is
set r to occur every minute. As we covered earlier, transferring every minute is quite
aggressive, and is probably reasonable only in a testing or debugging environment.

 In our next example, we’re going to show you how to transfer the IIS logs to stor-
age on a daily basis. The IIS logs are automatically captured by default by the diagnos-
tic agent, so you don’t need to add them as a data source. You can set the transfer
interval to once a day with this line:

instanceConfiguration.Logs.ScheduledTransferPeriod = TimeSpan.FromDays(1.0);

Any log files that are captured are sent to a container in BLOB storage, not to a table.
Each transfer results in one file in the container. A container hierarchy similar to what
you would see on the real server is created for you by the diagnostic agent. Your IIS
logs will be in a folder structure similar to what you’re used to.

 If logs that you don’t want to transfer are collected, you can set ScheduledTransfer-
Period to 0. This setting disables the transfer of any data for that data source. We

Destination storage
container

420 CHAPTER 18 Running a healthy service in the cloud
typically do this for the Azure diagnostics log themselves, at least until there’s a problem
with the diagnostic agent itself that requires troubleshooting.

 That’s how you schedule a transfer. Now let’s discuss how you can trigger a transfer
on demand.

18.4.2 On-demand transfer

An on-demand transfer lets you configure a onetime transfer of the diagnostics data.
This kind of transfer gives you the ability to pick and choose what is transferred and
when. A typical scenario is you want an immediate dump of logs because you see that
something critical is happening. You can set up an on-demand transfer in much the
same way as you would a normal transfer, although there are some differences.

 In the following listing, we’re initiating an on-demand transfer from within one of
the instances, but you can also initiate the transfer from outside the role with an
administrative application.

DeploymentDiagnosticManager myDDM = new
➥ DeploymentDiagnosticManager(RoleEnvironment
➥ .GetConfigurationSettingValue("DiagnosticsConnectionString"),
➥ txtDeploymentID.Text);

var myRoleInstanceDiagnosticManager =
➥ myDDM.GetRoleInstanceDiagnosticManagersForRole("NinjaWebSite");

DataBufferName datasourceToTransfer =
➥ DataBufferName.PerformanceCounters;
OnDemandTransferOptions transferOptions = new OnDemandTransferOptions();

transferOptions.From = DateTime.UtcNow -
➥ TimeSpan.FromHours(1.0);
transferOptions.To = DateTime.UtcNow;
transferOptions.NotificationQueueName = "transfernotificationqueue";

foreach (var instanceAgent in myRoleInstanceDiagnosticManager)
{
 Guid requestID = instanceAgent
 ➥ .BeginOnDemandTransfer
 ➥ (datasourceToTransfer, transferOptions);
 System.Diagnostics.Trace.WriteLine("on demand started:" +
 ➥ requestID.ToString(), "Information");
}

Like in the remote configuration example, you need to get a reference to the Role-
InstanceDiagnosticManagersForRole class. This reference will let you work with the
configuration manager for each instance. In this example, you’re going to be transfer-
ring the performance counter data over to an Azure table q. This transfer will
include all counters you might have running from prior configuration changes.

 You use the OnDemandTransferOptions class to configure how the transfer should
happen. This class has several parameters that you’ll want to set. Set a time filter at w,

Listing 18.3 Initiating an on-demand transfer

Transfers performance
counters

q

Selects time
 filter for data
to be sent

w

e

Provides
queue name for

notification messages

r

Starts transfer for
each instance
in role

421Using the service management API
which tells the agent to send over only the performance counter data that’s been gen-
erated in the last hour. If you’re transferring a log, you can also specify a log level filter
(informational, critical, and so on).

 When you start the transfers, each instance performs its own transfer. The transfer
operation is an asynchronous operation; you start it and walk away. In most cases,
you’ll want to know when the transfers have completed so that you can start analyzing
the data. You can have the transfer agent notify you when the transfer for an instance
is complete by passing in a queue name e. As each transfer is started, you’ll be given
a unique ID r to track. You can see the completion messages in figure 18.7. Each
message contains one of the unique IDs associated with each transfer.

 When each transfer is complete, the agent drops a small message onto the queue
you designated with that same ID. The message lets you track which transfers have
been completed.

 A great place to use an on-demand transfer is in the OnStop method in your
RoleEntryPoint override class. Whenever a role is being shut down, either intention-
ally or otherwise, this method fires. If you do an on-demand transfer in this method,
you’ll save your log files from being erased during a reboot or a move. These log files
can help you troubleshoot instance failures. Because you might not have enough time
to transfer gigabytes of log files, make sure that you’re transferring only the critical
information you need when you do this.

 Now that you know how to get data about what’s happening with your service,
we need to tell you about the APIs that’ll help you do something about what you see
happening.

18.5 Using the service management API
After your application is up and running in Azure, you’ll want to automate some of
the management functions. Automation can include scaling your roles, changing
configuration, and automating deployments. Almost anything you can do through
the Azure portal you can do through the service management API.

Figure 18.7 You can configure an on-demand transfer to notify you when a transfer is complete
by placing a message in a queue you specify. In this example, the role had two instances, so
two transfers were completed, one for each instance.

422 CHAPTER 18 Running a healthy service in the cloud
 The service management API is built like all the other APIs in Azure. It uses REST
and XML under the hood, wrapped in a pleasant .NET library. You can use the service
management API directly with REST, but most people use either the library or use a
tool that calls the APIs.

 All the management APIs we’re going to discuss can be called from inside or from
outside Azure. All management calls are free; they incur no cost to call or execute.
The Azure team has said that they monitor the use of the APIs and can throttle back
your calls if they’re abused.

 To start using the service management API, you need to configure your account
with certificates for API authentication. After you’ve done that, you’ll be able to send it
commands. After we show you how to configure your account, we’re going to look at
how you can work with your services and containers, how to automate a deployment to
the cloud, and how you can use the management API to scale your service up or down.

18.5.1 What the API doesn’t do

A little earlier we said that the service management API can do almost as much as the
portal. However, you must use the portal to do the following things:

� Access billing data—The portal has several tools you can use to monitor your
usage and billing in near real time. Monitoring allows you to estimate your
charges as they occur. The final numbers are crunched at the end of the month
to generate your bill.

� Create subscriptions and create compute or storage services—After you’ve created the
subscription and services, you can do everything else from the management API.

� Deploy management certificates—You can’t use the management service to deploy
a management certificate; you have to do this manually.

To make calls with the API, you need to sign them with a certificate, which we’ll discuss
next.

18.5.2 Setting up the management credentials

The service management API has a lot of power, so all of its calls and responses must
be secure. All calls are transferred over HTTPS, using a signed certificate that you asso-
ciate with your Azure account. Whether you’re calling the REST by hand or using the
.NET library, you’ll need to attach a certificate to your Azure account trusts.

 You can use any X.509 v3 certificate that you want to use. Because you have control
over which certificates your account trusts, you can use self-signed certificates if you
want to. You can also use certificates that you’ve purchased from a certificate authority
like VeriSign.

 Your account can hold up to five certificates. You can distribute those certificates to
different people or processes, and then eventually revoke them if you need to. All a per-
son needs in order to use the management API on your services is that certificate and
your subscription number. We’ll look at how to revoke a certificate later in this section.

423Using the service management API
SETTING UP A CERTIFICATE

To set up your management certificates, you need a certificate to upload. We’re going
to walk you through the process of creating a certificate locally and then uploading it
to your account.

 The goal is to create a .cer file that holds the public key for your certificate. You never
share the private half of the key. This public key will be uploaded to Azure, and Azure
will use it to verify that your private key was used to sign the management API request.

 You need to use IIS 7 to create a self-signed certificate. Open the IIS manager and
look for the Features view. Listed there is a link for Server Certificates. Click Create
Self-Signed Certificate in the Actions pane and follow the steps. You’ll give the certifi-
cate a name, which will be used whenever you’re working with the certificate.

 You can also use the Visual Studio command prompt to create a self-signed certifi-
cate. Open the command prompt (make sure to run it as an administrator), and then
enter the following command:

makecert -r –pe
➥ -n "CN=CompanyName"
➥ -a sha1
➥ -len 2048
➥ -ss My "filename.cer"

This command creates a certificate that you can use in the local directory.

IMPORTING AND REVOKING A CERTIFICATE

Importing a certificate is as easy as logging into your Azure portal and going to the
Account tab. Choose Manage My API Certificates. The window, shown in figure 18.8,

Figure 18.8 This window shows that two X.509 certificates have been imported; one for Lazy Dev
and one for Awesome Dev. Certificates are used to authenticate to Azure when you’re using the
service management API. Guess whose certificate we’re going to revoke in the next example?

424 CHAPTER 18 Running a healthy service in the cloud
displays the certificates you’ve uploaded; you can also upload a new certificate from
this window. Your certificate must be in a .cer file. If you have a different format, you
can easily convert it by importing it into your Windows certificate store, and then
exporting it in the format you want.

 You can have up to five certificates in your account at a time; take advantage of them.
Each person or system that’s using the management API should have their own certifi-
cate. If you provide certificates in this way, you’ll have an easy way to revoke their access.
To revoke a certificate, click the Delete X icon next to the one you want to revoke.

 You need to attach your certificate to each request that you send to the API. Attach-
ing your certificate ensures that the message is signed with your private key, which
only you should have. When Azure receives your message, it’ll check that the message
came from you by opening it with the public key you uploaded in the .cer file.

 You’ve got some certificates now and you’re ready to learn about some of the
things you can use the service management API for.

18.5.3 Listing your services and containers

You can save a lot of time if you learn how to automate your deployments instead of
doing them by hand through the portal. We’re going to start this section by showing
some code you can use to get a list of the service and storage accounts you’ve created
in Azure. This code is fairly primitive and uses the REST API directly. We’ll eventually
start using a tool that will abstract away the raw REST so that you have something nicer
to work with.

 You’re going to use the WebRequest class to work with the REST call you’ll be mak-
ing. You need to pass in the URI of the call you want to make. The following listing
shows how to use REST to query for a list of services.

var request = (HttpWebRequest)WebRequest.Create(
➥ "https://management.core.windows.net/7212af99-206f-dem0-9334-
➥ 380d0f841d0b/services/hostedservices");

request.Headers.Add("x-ms-version:2009-10-01");
request.ClientCertificates.Add(
➥ X509Certificate2.CreateFromCertFile(@"C:\
➥ \awesomedev.cer"));

var responseStream = request.GetResponse().GetResponseStream();

var services = XDocument.Parse(new
➥ StreamReader(responseStream).ReadToEnd());

In the previous listing, you pass in a string that includes the root of the call, https://
management.core.windows.net/, and the subscription ID (which can be found on
your Accounts tab in the portal) at q.You pass this string because you want a list of

Listing 18.4 Querying for the list of services with REST

q
Required
subscription ID

Adds certificate
to the request

w

425Using the service management API
the services that you’ve created. Every request into the management service needs this
base address. Because for this example we want to include a list of the hosted services
you have in your account, add /services/hostedservices to the end of your URL.

 You also need to attach a version header and your certificate for authentication.
The version header tells Azure which version of the management service you intend
to call. Right now the latest version to call is the one that was published in October of
2009, so let’s use that one. The certificate is easily attached at line w. You’re attaching
it from the file you generated above. You could have used the certificate that’s in your
secure certificate store.

 When you run this code, the result you get in raw XML format is shown in the fol-
lowing listing. All three services that are running in your subscription (aiademo1,
aiademo2, and aiademo3) are listed in HostedService elements.

<HostedServices xmlns="http://schemas.microsoft.com/windowsazure"
➥ xmlns:i="http://www.w3.org/2001/XMLSchema-instance">
 <HostedService>
 <Url>https://management.core.windows.net
 ➥ /7212af99-206f-dem0-9334-80d0f841d0b
 ➥ /services/hostedservices/aiademo1</Url>
 <ServiceName>aiademo1</ServiceName>
 </HostedService>
 <HostedService>
 <Url>https://management.core.windows.net
 ➥ /7212af99-206f-dem0-9334-380d0f841d0b
 ➥ /services/hostedservices/aiademo2</Url>
 <ServiceName>aiademo2</ServiceName>
 </HostedService>
 <HostedService>
 <Url>https://management.core.windows.net
 ➥ /7212af99-206f-dem0-9334-380d0f841d0b
 ➥ /services/hostedservices/aiademo3</Url>
 <ServiceName>aiademo3</ServiceName>
 </HostedService>
</HostedServices>

After you’ve received the XML, you can use something like Language-Integrated
Query (LINQ) to XML to parse through the results. You’ll want the URL for each ser-
vice for later when you’re calling back to reference that particular service. You can use
the same code to get a list of storage accounts in your Azure account by changing the
address of the request from /hostedservices to /storageservices.

 You’ll be able to use these endpoints to see the storage and service accounts you
have. This part of the API is read-only. To create service or storage accounts, you’ll
have to use the portal.

 Now that you can make simple queries of the management service, let’s flip over to
csmanage.exe and use it to deploy a simple web application to Azure.

Listing 18.5 The raw XML that comes back from our request

Management URL
to the service

Simple name for
your service

426 CHAPTER 18 Running a healthy service in the cloud
18.5.4 Automating a deployment

Even though you can do everything you need through the naked REST API of the ser-
vice management service, it’s a lot easier to use something that provides a higher level
of abstraction. REST is fine, but it’s too low-level for us on a daily basis.

 There are two popular options to go with. The first is a collection of PowerShell
commandlets that have been provided by Microsoft. These are useful when you’re
integrating cloud management into your existing management scripts. You can find
these commandlets at http://code.msdn.microsoft.com/azurecmdlets.

 We’re going to use csmanage.exe for the rest of this chapter. This small utility is
provided by the Azure team and can be found at http://code.msdn.microsoft.com/
windowsazuresamples.

 We might be using a higher-level tool, but you still need to provide the tool with
the subscription ID of your Azure account and the thumbprint for the certificate
you’ll be using to manage your account. You can enter these into the configuration
file for the tool, csmanage.exe.config. The easiest place to find the ID and the thumb-
print is on the Azure portal.

 The csmanage application can work with one of three resources online: hosted ser-
vices, storage services, or affinity groups. Each command you send will include a refer-
ence to the resource you want to work with.

GETTING A LIST OF HOSTED SERVICES

To get a simple list of the hosted services you have in your account, you can execute
the following command at a command prompt. This command executes the same
query you previously made manually.

csmanage.exe /list-hosted-services

When you run this command, the application connects to your account in the cloud
and returns a list of the services you have. When we executed this command, we had
just one hosted service, as shown in figure 18.9.

 After you have a list of your services, you next task is to create a deployment of your
application.

Figure 18.9 You can
use the csmanage
command-line tool to
execute management
commands against your
account in the cloud.
In this example, we
used a simple command
to list the hosted
services we have.

http://code.msdn.microsoft.com/windowsazuresamples

427Using the service management API
CREATING A DEPLOYMENT

First, you need to create the package for your code. You’ve probably done this a thou-
sand times by now, but right-click the Azure project and choose Publish.

 When you’re using the management service, a service package has to be in BLOB
storage for you to deploy it; you can’t upload it as part of the actual create-deployment
command. What you can do is upload the package through any tool you want to use. In
this example, we just want to upload the cspkg file. This BLOB container can be public
or private, but it should probably be private. You don’t want some jokester on the inter-
web to download your source package. Because the management call is signed, it'll have
access to your private BLOB containers, so you won’t have to provide the credentials.
The configuration file will be uploaded when you run the create-deployment com-
mand. The following listing shows the command-line code for deploying a package.

csmanage.exe
 /create-deployment /slot:staging
 /hosted-service:aiademo1
 /name:ninjas
 /label:build1234
 /config:ninja.cscfg
 /package:http://aiademostore.blob.core.windows.net/
 ➥ deployments/NinjaDoughnuts.cspkg

That’s a lot to type in by hand. The most common use of csmanage is in an automated
deployment script. You could make the deployment completely hands-off with
enough script and PowerShell. When you execute the command in listing 18.6,
there'll be a slight pause as the configuration is uploaded and the management ser-
vice deploys your bits. The output of the command is shown in figure 18.10.

Listing 18.6 Pushing a deployment to the cloud from the command line

Local path of configuration
file to upload

URL of package
to deploy

Figure 18.10 The output from csmanage when you script out a deployment to staging.
We’re deploying our ninja doughnut application, which has nothing to do with
doughnuts or ninjas.

428 CHAPTER 18 Running a healthy service in the cloud
All this is wonderful, but you don’t want to just upload and deploy your code; you
need to start it.

STARTING THE CODE

You need to start your code so that the FC can start your site. The command to start
everything is quite simple:

csmanage
➥ /update-deployment
➥ /slot:staging
➥ /hosted-service:aiademo1
➥ /status:running

This command tells the management API that you want to update the deployment of
your service that’s in the staging slot to running. (You can use the same command to
set the status to suspended.) After you set the status to running, it can take a few min-
utes for the FC to get everything up and running. You can check on the status of each
instance of your roles by using the view-deployment command:

csmanage /view-deployment /slot:staging /hosted-service:aiademo1

When you execute this command, you’ll get a detailed view of each instance. In this
example, both of our instances were busy, as shown in figure 18.11. If we just wait a few
minutes, they’ll flip to ready.

 When your instance status reads as ready, you can use a command to perform a VIP
swap.

PERFORMING A VIP SWAP

Remember, a VIP swap occurs when you swap the virtual IPs for production and stag-
ing, performing a clean cutover from one environment to the other. Using a VIP swap

Figure 18.11 You can check the detailed status of each role instance by using the view-
deployment option. In this example, our instances are busy because we’ve just deployed the
package. In a moment, the status will change to ready.

429Using the service management API
is the simplest way to deploy a new version. You can always do an update domain walk,
which is more complicated but provides the capability for a rolling upgrade.

 You need a deployment in each slot to perform a VIP swap through the csmanage or
REST interfaces. If you’re deploying for the first time to an empty environment, either
deploy your first version into the production slot, or rerun the swap-deployment com-
mand and adjust the slot parameter to production.

 To perform the VIP swap, execute the following command:

csmanage /swap-deployment /production-slot:ninjasV0 /source-deployment:ninjas
/hosted-service:aiademo1

Be careful when you type in this command. The third parameter, source-deployment,
is different from what you would expect. Because the second parameter is production-
slot, you would expect the third to be staging-slot. The naming isn’t terribly consis-
tent. Another mystery is why you need to define the slot names at all. You can have only
one slot of each anyway. Go figure.

 Figure 18.12 shows the successful completion of the VIP swap.
 Now that you’ve swapped out to production and have fully tested the slot, you can

tear down the staging slot.

TEARING DOWN A DEPLOYMENT

Use the following command to suspend the state of the servers, and then delete the
deployment:

csmanage /update-deployment /slot:staging /hosted-service:aiademo1 /
status:suspended

csmanage /delete-deployment /slot:staging /hosted-service:aiademo1

You need to execute these two commands back-to-back. You can’t delete a service while
it’s running, so you have to wait for the first command to suspend the service to finish.

 Figure 18.13 shows the successful completion of these commands.
 You’ve successfully automated the deployment of a cloud service, started it, moved

it to production, and then finally stopped and tore down the old version of the service.

Figure 18.12 The VIP swap has successfully swapped the staging and production slots. You
need to provide the names of the deployments in each slot.

430 CHAPTER 18 Running a healthy service in the cloud
You’ve done this without having to use the portal. Even so, you still had to use the por-
tal to upload your management certificates and create the initial service container.

 Now to what people really care about in the cloud: dynamically scaling the number
of instances that are running your service.

18.5.5 Changing configuration and dynamically scaling your application

One of the golden promises of cloud computing is the dynamic allocation of
resources to your service. It’s really cool that you can deploy a service from nothing to
20 servers, but you also want to be able to change that from 20 servers to 30 servers if
your service experiences a spike of some sort.

CHANGING THE SERVICE CONFIGURATION FILE

As we’ve discussed in chapters past, your service is based on a service model that’s
defined in your service configuration file. This file defines how many instances per
role your service defines. You can change this file in one of three ways.

 The first way to change the file is to edit it online in the portal. This is the simplest
way to change it, but it’s also the most primitive. You can’t wire this up into an auto-
mated system or into an enterprise configuration management system.

 The second method can use configuration files generated by your enterprise con-
figuration management change system. You can upload a new file (version them with
different file names so you can keep track of them) into BLOB storage, and then point
to that file when you change the configuration from the portal.

 The third option lets you upload a new configuration through the service manage-
ment REST API. If you don’t want to use REST, you can use csmanage, like we’ve been
doing in the past few sections.

 The FC responds in different ways depending on how you’ve changed your config-
uration and how you’ve coded your RoleEnvironmentChanging event. By default, if

Figure 18.13 After deploying and swapping your new version to production, you
suspend the staging environment and then tear it down to stop the billing. This
process involves two steps: first you must suspend the service, and then you delete it.

431Using the service management API
you’ve changed anything besides the instance count of a role, the FC tears down and
restarts any instances for the affected role. That part of the service comes to a screech-
ing halt while the instances are restarted. The length of the outage isn’t very long, but
it’s there. Be sure to think about which changes should restart your roles and which
shouldn’t; you can adjust the code in the RoleEnvironmentChanging event accordingly.

 If you increased the instance count, none of the instances are affected. The FC cre-
ates new instances, deploys your bits, configures them, and wires them into the net-
work and load balancer like it does when you’ve started the role instances from
scratch. This process can take several minutes. You won’t see an immediate availability,
so be patient. Take this slight delay into consideration when you’re developing the
logic you’ll use to detect when you need to add instances.

 If you’ve reduced the number of instances, then the FC uses an undocumented
algorithm to decide which instances are shed. They’re unwired from the load bal-
ancer so that it doesn’t receive any new traffic, and then they’re torn down.

 After you’ve made changes to the configuration file, you have to deploy it.

DEPLOYING THE NEW CONFIGURATION FILE

You can use csmanage to deploy a new configuration file. The command should be
fairly easy to understand by now. The .cscfg file that will be uploaded by the following
command is in the same folder as csmanage. Your file probably isn’t in the same
folder, so you’ll need to provide a path to the configuration file.

csmanage /change-deployment-config /config:ninja_daytime.cscfg /
slot:production /hosted-service:aiademo1

When you’re using the management API (and csmanage), you have to upload a locally
stored configuration file. In figure 18.14, you can see that it took quite a while for the

Figure 18.14 We’ve uploaded a new configuration file for our service. Because we changed
only the number of instances for each role, we didn’t have any downtime. The FC has spun up
new instances to meet our needs.

432 CHAPTER 18 Running a healthy service in the cloud
management service to spin up the new instance. The total time it took in this
instance was about 4 minutes.

 This might seem like a lot of work. Couldn’t Azure do all this for you automatically?

WHY DOESN’T AZURE SCALE AUTOMATICALLY?

Many people wonder why Azure doesn’t auto-scale for them. There are a couple of
reasons, but they all fall into the “My kid sent 100,000 text messages this month and
my cell phone bill is over a million dollars” category.

 The first challenge for Azure with auto-scaling your application is that Azure
doesn’t know what it means for your system to be busy. Is it the depth of the queue?
Which queue? Is it the number of hits on the site? Each system defines the status of
busy different than any other system does. There are too many moving parts for a ven-
dor such as Microsoft to come up with a standard definition that’ll make all its custom-
ers happy.

 Another reason is that Microsoft could be accused of too aggressively scaling up,
and not scaling down fast enough, just to increase the charges on your account. We
don’t think they would do that, but the second someone thinks the algorithm isn’t
tuned to their liking, Microsoft would get sued for overbilling customers.

 Another scenario this approach protects against is a denial of service (DoS) attack.
In these attacks, someone tries to flood your server with an unusually high number of
requests. These requests overcome the processing power on your servers and the
whole system grinds to a halt. If Azure automatically scaled up in this scenario, you
would come in on Monday the day after an attack and find 5,000 instances running in
production. You would get enough mileage points on your credit card to fly to the
moon and back for free, but you probably wouldn’t be too happy about it.

 Microsoft has given us the tools to manage scaling ourselves. We can adjust the tar-
get number of instances at any time in a variety of ways. All we have to add is the logic
we want to use to determine what busy means for us, and how we want to handle both
the busy states and the slow states.

 We’ll look at some approaches for how to scale your Azure environment in the
next section.

18.6 Better together for scaling
Everyone expects that they’ll be able to dynamically scale their service in Azure.
Dynamic scaling is possible, but it requires some heavy lifting on the developer’s part.
Over time, vendors will provide this as a service on top of Azure. In the meantime,
you’ll want to provide some sort of control over the amount of resources allocated to
your service.

 In this section, we’re going to follow the same model that our homes use for heat-
ing and cooling. Our homes are driven by a sensor that detects a healthy condition (is
the temperature in a pleasant range?), a mechanism to change that temperature, and
some simple rules that keep the heater from running for 24 hours straight. We can
take this approach and apply it to a cloud service. We’ll instrument the cloud service

433Better together for scaling
with the diagnostic engine, use the management API to control the infrastructure, and
provide some code to control how all that works. You want to respond to events and
keep your system healthy so you don’t come in on Monday to find that you have 1,500
instances running in the cloud.

 In keeping with our heating and cooling metaphor, let’s start with the thermostat.

18.6.1 The thermostat

The thermostat in your home is a simple component of a common control system.
Other examples include the cruise control in your car, the autopilot in a plane, and
many manufacturing systems. Each of these systems has three components.

 The first component is the system itself: the car, the plane, the furnace in the
house. In Azure, the system is the service you’re running. The system needs to have
inputs to be able to control important aspects of itself. In the furnace example, you
can send it a turn-on signal or a turn-off signal. These signals cause it to generate
more heat or to stop generating heat.

 The second component is the measurement or input device. This device measures
the control aspects of the system. In our house example, it’s the thermometer in the
thermostat. In Azure, the measurement might be any number of things. A thermostat
uses a simple dial to determine what the desired temperature is, as shown in figure 18.15.

 The hard part for systems in Azure is deciding what busy is for the system. There’s
not a simple dial, but likely an amalgam of several inputs; perhaps the depth of a mes-
saging queue, the number of pending requests in the IIS queue, and the running
average of response time for each web request. Every measurement point you want to
monitor to help decide what busy means needs to be something you can measure
across all your instances.

 Busy is sometimes represented as an absolute measure. For example, you could
define a concrete amount of time a response is allowed to take under normal condi-
tions. The system is either beneath or above that allotted time. Some definitions for a
busy state are relative in nature. Saying that your system is busy whenever there are
more than 50 messages in the queue won’t work very long. You might instead want to

Fu
rn

ac
e Furnace heats

house, raising the
current temperature.

Current
temperature

Target
temperature

Thermostat

Thermostat detects a
condition that requires
adjustment. It tells the
control unit the house
is too warm.

Controller knows what
to do in a too-warm
scenario, and tells the
furnace to stop.

Furnace
control unit

60

65
70 75

80
85

Figure 18.15 A control system
you might have in your house.
The furnace is the system you
want to control. The
thermometer measures the
temperature of the house and
provides feedback on the
performance of the system to
the controller. The controller is
the electronics in your
thermostat, which tells the
furnace to turn on or off based on
the input from the thermostat.

434 CHAPTER 18 Running a healthy service in the cloud
measure 50 messages per instance. Then, if you have five instances, a scenario that has
200 messages in the queue is OK. In this way, you can scale up the definition of busy as
you scale up the amount of available resources.

 The last component is the control logic itself. This is the piece that determines
whether anything needs to be done, and how it should be done.

18.6.2 The control system

Your control system has only a few things that it can do with regard to managing per-
formance or scale. In general, the only things the control system can do is add or
remove instances of roles. That’s about it.

 Of course, there are plenty of scale patterns you can implement, and some will
help prevent a dramatic scale failure from happening. You’ll want to look into shunt-
ing, bulkheads, and partitioning. Just look in one of those enterprise patterns books
on your bookshelf.

 You need to instrument your control system yourself so you know what decisions
it’s making and how. You want to be able to figure out what went wrong when your ser-
vice lumbers out of control and eats a village.

 The control system can run as a simple role in Azure or as an on-premises applica-
tion. You might assume an on-premise is a better solution, but remember that you’ll
need the input of the diagnostic logs; you’ll have to download them all the time to
make decisions. Having the control for the system running in the cloud puts the code
near the data, which makes it both faster and cheaper.

18.6.3 Risks and managing them

A lot of risk is associated with implementing an auto-scaling component for your ser-
vice; it’s not trivial. You’ll have to take into consideration a lot of issues and complexi-
ties. If things go haywire, they can go haywire badly.

 On one hand, you could end up with a large Azure bill if your code goes crazy and
spins up 400 instances. On the other hand, if it fails to work properly, you’ll end up
not responding to a busy state at all, leading to lost orders and unhappy users. Scaling
requires a fine balance, and you’ll want some protective measures in place.

 In your logic, make sure you have an absolute upper boundary in place. No matter
what’s happening in the feedback system, the scaler won’t go above this boundary. If
the scaler reaches its ceiling, it should call a human and ask for help (by sending an
email or a text message). You should set this boundary to something that’s high
enough to handle expected spikes (the big spike at the end of month), plus 15 per-
cent for a buffer. In addition to this ceiling, set a floor to the scale value. You might
want to make sure you always have two instances for reliability. Of course, some appli-
cations are OK with just a single instance, and others are OK to be completely shut
down if there isn’t any load.

 At some point, the spike that caused the controller to create all these instances will
pass. After it does, be sure that your controller starts shedding instances to bring the
amount of resources deployed back into an acceptable range for the current load.

435Better together for scaling
 Pick an algorithm that matches how your load tends to fall off. If it tends to fall
very quickly in a steep spike, then you should use an aggressive backoff strategy. In this
case, you could use a halving technique in which for each polling cycle that the con-
troller deems is excessive, it cuts the amount of resources by half (going from 32
instances to 16, for example).

 In other services, you’ll need a slower backoff process, dropping only one instance
every time the measure drops by a certain percentage. Do extensive testing on the
behavior of your controller to make sure it’s working under stressful situations the way
you want it to.

 Another risk is that the controller might flood the channel with conflicting mes-
sages. If the polling cycle is too fast and the traffic too unpredictable, you might end
up sending conflicting messages through the channel to the service. If you send a
message to add an instance and then immediately follow it with a message to shed an
instance, you’ll end up thrashing your infrastructure. You also don’t want to acciden-
tally send a message to add an instance several times when you want only one net new
instance started. To avoid this problem, make sure your controller is stateful, tracking
the commands it has sent and whether those commands have been executed yet. You
might even want to suspend all polling until the chosen action is completed.

 No matter how clever you get with your controlling logic, make sure that you
always include wetware somehow. The controller should always have a way to notify a
human as to its behavior. If you run into the “we accidentally started up 400 instances
last night” problem, you’ll likely have a “don’t have a job on Monday” problem.

 We strongly recommend that you initially build tools that help you watch perfor-
mance and easily maintain it. Keep the decision to add or remove instances in the
control of humans, at least until you have an absolute understanding of how the sys-
tem responds to stress, and how it responds to increases and decreases in resources.

 The cloud does a great job of abstracting away the need to manage the platform,
but you still need to manage the application.

18.6.4 Managing service health

Managing service health is critical to your system. Just because the system is running in
the cloud doesn’t mean there aren’t failures and that your system doesn’t need to be
managed. You still need to manage a system in the cloud, and you need to take into con-
sideration all the aspects that you consider when the system is running on-premises.
The cloud doesn’t fix problems in a bad system; it makes those problems more obvious.

 As you’re building your system, think about how you’re going to manage disaster
recovery, backups, and the ongoing health of the system. The system will be reliable
within the Azure data center where the FC can monitor it, but that doesn’t protect you
against the worst scenario: that data center gets wiped out. In some scenarios, it might
be OK to not manage the slight risk of a whole data center disappearing. On the other
hand, many companies spend a lot of money running duplicate data centers that
aren’t near one another, just in case. You need to think about this. If you need to
reduce the risk of depending on one data center, then you have a few options. Just to

436 CHAPTER 18 Running a healthy service in the cloud
be clear: the FC will manage the state of your system in a data center, but it won’t, at
this time, manage it across data centers. We think that in the fullness of time, the fab-
ric will be that powerful, but at that time it’s likely to be renamed to Microsoft SkyNet.

 If the loss to your business isn’t likely to be great, and you can deal with a few hours
downtime, you can simply plan on redeploying to another data center in the event of
a catastrophe. You need to keep a copy of the production bits and service configura-
tion handy. You also need a backup of any data in the cloud. With these in hand, you
could completely redeploy to another Azure data center in a matter of minutes to
hours (depending on the amount of data that needs to be uploaded).

 If you need to minimize downtime, you can run two copies of your service in
Azure. Set each copy with a different geographic affinity in the portal. Azure is then
forced to run each copy in a different data center. Perhaps the first copy is running in
the Chicago data center, and the second is running in the Southwest data center. You
could then use a DNS server that is geo-aware, and have it route users to each system,
based on their location. In this situation, you’d have to replicate your data across the
two systems. One way to do so would be to run them in complete separation, if your
business processes can handle that. Then, once a night, you could merge the data sets
with a background operation.

 In all of these situations, you need to be able to understand the health of your sys-
tem. One way to do that is to use the management APIs to understand the load on
your system, and report the status in a recurring manner.

18.7 Summary
Although this chapter might have seemed like two disparate topics jammed together
in one chapter to save space, at this point, you should understand how diagnostics,
service management, and good service health instrumentation is important to run-
ning a healthy service in the cloud.

 We dug deep into the diagnostics API, showing how you collect all sorts of data
from many different instances, and merge it all into one place to make it easy to ana-
lyze the result. Each data source has its own configuration mechanism and destina-
tion. You can tell each data source to transfer its data on a schedule, or you can force
an on-demand transfer.

 The Azure platform also provides a rich service management API over REST. You can
do almost anything over this API that you can do in the portal except for creating host-
ing and storage services. Although REST is awesome, some people will likely opt to use
csmanage.exe, especially when they’re automating deployment with a build system.

 Finally, we merged diagnostics and the service management API together to dis-
cuss how an auto-scaling feature might look, and why Microsoft doesn’t provide one
out of the box. You now have all of the tools you need to rock out in the cloud, scale
your system up and down, and know for sure what’s happening with your services.
Remember that as you move to the cloud, you want to stop managing servers and
start managing services.

index
Symbols

.NET framework 150

.NET Services. See AppFabric
$queue browser 366

Numerics

32 bit 148
native libraries 150

400 - Bad Request 370
64 bit 148, 150

native libraries 150

A

A/B test 408
Access Control Service 381–384

accepting SWT tokens 388–389
actors 382
authorization server 382
authorization tokens 383–384
configuring the namespace

392–396
future of 402
identity stores 381
issuers 393
management key 387
rules 395–396
scopes 394
See also AppFabric ACS
setting up 385–387
SWT 384
token policies 393
trusted authority 382

access key 179
accessing

development storage 171–173
local storage 199
runtime settings 101

AccountName parameter 45
accounts

administrator 308
SQL Azure user

accounts 308–309
ACM.exe tool 392
ACS. See Access Control Service
actors 382

client 382
issuers 382
protected resources 382
relying party 382

adaptive streaming 225
adding certificates 91–92
AddMessage method 367
addresses 343
administration 54
administrator accounts 308
ADO.NET Data Services 253

and context class 257
affinity 178, 436
affinity groups 41, 426
AJAX 114

asynchronous requests 124
ALTER DATABASE command

301
Amazon Simple Storage System

161
Amazon SimpleDB database

compared to Windows Azure
250

analytical and billing tools 39
analyzing databases 310
and query expression 289
ANSI nulls 310
APIs

for BLOB data 160
Service Management 421–432

app.config file 60, 400
AppFabric 4, 25–26, 342

accepting SWT tokens
388–389

Access Control Service
381–384

ACM.exe tool 392
AppFabric ACS 25
AppFabric Service Bus 25–26
audience 391
checking tokens 389
configuration browser 392
creating a namespace 385
future of 402
identity stores 381
in Visual Studio 381
key services 380
Service Bus 381, 397–399

AppFabric ACS 25
introduction to 25

AppFabric Caching 25
AppFabric configuration

browser 392
AppFabric Service Bus 25–26
AppFabric Service Workflow and

Management 25
application servers 14
application state 348
437

INDEX438
applications
adding Microsoft.Windows-

Azure.ServiceRuntime
assembly 79

building 9–13
building a media player 224
building with Visual Studio

10–13
communicating with third-

party sites 217–223
configuring build configura-

tion 104
creating 33–39
creating with Visual Studio 267
CSS and XHTML 34–36
deploying 45–47, 427
deploying with Azure portal

39–47
fault tolerance 21
flipping 42
hosting 6–8
hosting in BLOB storage

215–223
logging 43
migrating to SQL Azure

309–311
migrating to Windows Azure

80
moving to production 47
multiple instances 119–120
packaging 45–47
running 6–8
running across multiple ser-

vers 7
running in development fab-

ric 38
running locally 37
scaling 117–118
scaling dynamically 430–432
scaling out 117
scaling out automatically 117
scaling up 118
server applications 7
setting up storage environ-

ment 43–45
Silverlight Spectrum emulator

215–217
simulating extreme load 115
state 348
supported types 9
tearing down 429
testing under load 123
tweaking configuration

settings 104

types 6
under extreme load 116
under normal load 114
using local storage 32, 88
web search application

219–223
Application_Start event 348
ApproximateMessageCount

property 371
arbitrary diagnostics sources

416
arbitrary files 407
architecture

flexibility 352
n-tier model 398

Arguments property 148
arrays

characters arrays 338
AsBytes property 368
ASP.NET 143

authorization 198
caching 135–137
integrating BLOB data

195–199
integrating private content

196–199
maximum request length 191
persisting data 127

ASP.NET 3.5 SP1 9
ASP.NET applications

configuring runtime settings
99

optimizing delete perfor-
mance in 278–279

ASP.NET MVC2 Web Role
template 30

ASP.NET Web Role template 30
assemblies

Diagnostics 34
Microsoft.WindowsAzure.

ServiceRuntime 79–81, 107
Microsoft.WindowsAzure.

StorageClient 252
ServiceRuntime 34
StorageClient 34
System.Data.Services 252
System.Data.Services.Client

252
AsString property 368
asymmetric queues 373
asynchronous 373
asynchronous calls

performance 320
asynchronous work 347

AtomPub standard 267, 270, 286
creating tables using 271
verbosity 287

attributes
enableNativeCodeExecution

141
enableNativeExecution 86
LoadedBehavior 225

audience 390–391
authenticating

requests 273–275
authentication 400, 425

shared key 273
Shared Key Lite 274

authorization 198
accepting SWT tokens

388–389
attaching tokens 392
audience 391
checking tokens 389
claims 384
management key 387
OAuth standard 383
setting up Access Control

Service 385–387
SWT 384
tokens 383–384
validating key 187

Authorization header
shared key authentication

274
Shared Key Lite

authentication 274
authorization header 363, 388
authorization key

validating 187
Authorization request header

187
authorization server 382
authorization tokens 383–384
automatic scaling 432
automating

deployment 424–430
automation

lights-out operations 54
Azure Diagnostics 405
Azure Drive 162, 169
Azure portal

affinity groups 41
creating namepaces 385
deploying with 39–47
importing certificates 423–424
introduction 40
managing certificates 91

INDEX 439
Azure portal (continued)
modifying runtime settings

102–103
revoking certificates 423–424
rolling upgrade 67
setting up domains 165
setting up services 41
setting up SQL Azure 297–300
setting up storage account

164
static upgrades 66
subscription ID 426
uploading new service config-

uration file 102
validating domains 165

Azure Queue 338
Azure storage 376
Azure Storage Explorer 253

B

backend server 346
background process 146
background threads 348
BackOffPace property 366
BACKUP command 312
backups 305–307
bandwidth 301
BASIC 216
Batch parameter 283
batch processing 377
batching data 281
BCP tool 306
bin folder 29
binary files. See BLOB data
binding 343, 401

data in code-behind 36
BizTalk Services. See AppFabric
Blank Cloud Service template

30
Blob Browser tool 212, 230
BLOB data 16, 32, 148–149,

160–179, 354
and custom metadata 203–204
and local caching 199
APIs 160
as media server 223–232
as origin server 235
associating domain with 164
Azure Drive 162
blocks 17
checking last modified time

202
checking properties 201–202

checking properties with
StorageClient library 202

consistency 161
container 163
containers 166, 169–178
copying 204–206
deleting 192
disk storage 161
downloading 193–195
downloading from private

containers 193–195
downloading from public

containers 193
endpoint 171
hosting applications 215–223
hosting Silverlight Spectrum

emulator 215
hosting static websites

209–210
in public container 196
integrating with ASP.NET

195–199
listing 189
listing with REST 182–185
managing 162
managing with StorageClient

library 188–193
media player 224
MIME type 193, 195, 213
optimizing performance 196
performance 162
publishing websites to

212–215
replication 161
scalability 160
setting shared access permis-

sions 206
setting up domains 165
setting up storage account

164
snapshotting 206
splitting into blocks 192
storage account 163
table-driven 195
uploading 191–192
versus Shared Access

Signatures 198
versus traditional approaches

157
versus web roles 210
with content delivery networks

232–236
with local storage 199–204

BLOB storage. See BLOB data

blobClient class
GetContainerReference

method 190
BlobProperties class

BlobType property 202
CacheControl property 202
ContentEncoding property

202
ContentLanguage property

202
ContentMD5 property 202
ContentType property 202
Etag property 202
LastModifiedUtc property

202
LeaseStatus property 202
Length property 202

BlobType property 202
Boolean logic 291
browser sessions 127
buffers 338
building

applications 9–13
Bulk Copy Program. See BCP tool
bulkheads 434
business logic 338
busy state 433
byte arrays 367

C

C# 11
representing entities 241

CacheControl property 202
caches. See caching
caching 135–138, 359

ASP.NET 4.0 137
ASP.NET cache 135
distributed 136–137
empty caches 322
in-process 135
local 199
Memcached 136–137
populating cache 321
static data 321–322
Windows Server AppFabric

Caching 137
canonicalization 187
CAS 140
Cascading Style Sheets. See CSS
Cassini web server 31
CBlox 53
CDNs. See content delivery net-

works
certificate authorities 422

INDEX440
certificate thumbprints 98
certificates 90–93

adding 91–92
adding to development fabric

91
adding to production fabric

91
and service definition file 92
certificate authorities 422
configuring 97–98
configuring HTTPS endpoint

92
generating 90
importing 423–424
makecert tool 90
management certificates 423
revoking 423–424
self-signed 423
thumbprints 98

CGI 141–146
enabling in Windows 7 142
enabling in Windows Server

2008 142
enabling in Windows Vista

142
CGI web role 144
CGI Web Role template 30
Changed event 103
changing

configuration 430–432
service configuration file 430

changing configuration 430
Changing event 103
character arrays 338
Chris Hay. See Blob Browser tool
chunking 223–225

downloading chunks 227–228
sharding 302
with Silverlight 228–232

claim set 384, 390
claims 384

CBAC 384
claim set 384, 390

claims based access control 384
classes

CloudBlobClient 174
CloudBlobContainer 175
CloudBlobDirectory 214
CloudQueueClient 364
CloudQueueMessage 367
CloudStoragAccount 174
CloudStorageAccount 172,

364
ConfigurationManager 61
context class 257

CrashDumps 407
DataServicesContext 257
DeploymentDiagnostic-

Manager 416
DirectoryConfiguration 407,

418
HostedService 425
LocalResource 354
OnDemandTransferOptions

420
PerformanceCounter-

Configuration 408, 412
RoleEntryPoint 421
RoleEnvironment 80, 109,

345
RoleInstanceDiagnostic-

Manager 415
RoleInstanceDiagnostic-

ManagersForRole 420
RoleManager 348
ServiceAuthorizationManager

388
ServiceHost 342
WebClient 391
WebHttpBinding 387
WebOperationContext 388,

392
WebRequest 424
WebServiceHost 387
WindowsEventLogsBuffer-

Configuration 408
cleanOnRoleRecyle parameter

354
Clear method 364
clients 382

connecting to each other 398
sending tokens 390–391

cloud computing
abstraction 56
affordability 19
and SQL Server 23–24
and SQL Server. See SQL Azure
as a utility service 19
capacity 21
cloud operating system 5
conceptualizing 37
diagnostics 405–421
differences from local envi-

ronment 32
history 51
how it works 56–57
identity 381
introduction 4–8
metered services 4
reasons for using 18
scalability 19

Service Bus 398–399
shared storage 16
storing data 15–18
troubleshooting 406
using PHP 143–146

cloud operating system 5
Cloud Service templates 29

ASP.NET MVC2 Web Role
template 30

ASP.NET Web Role template
30

Blank Cloud Service template
30

CGI Web Role template 30
WCF Service Web Role tem-

plate 30
Worker Role template 30

CloudBlobClient class 174
GetBlobReference method

174
GetContainerReference

method 174
ListBlobsWithPrefix method

174
ListContainers method 174

CloudBlobContainer class 175
Create method 175
Delete method 175
ListBlobs method 175

CloudBlobDirectory class 214
CloudQueue 365
CloudQueue class

AddMessage method 367
Clear method 364
Create method 364
CreateIfNotExist method 364
Delete method 364
DeleteMessage method 368
GetMessages method 368
PeekMessage method 368
PeekMessages method 368
SetMetadata method 364

CloudQueueClient class 364
ListQueues method 364

CloudQueueMessage class 367
CloudStorageAccount class 172,

174, 364
FromConfigurationSetting

method 364
SetConfigurationSetting-

Publisher method 177
CloudTableClient class

CreateTableIfNotExist method
255

DeleteTable method 269

INDEX 441
CLR 140–141, 313
clustered indexes 312
CNAME entries 166
code

centralizing 61
file-reading 61

code access security. See CAS
code-behind 36, 120, 190
CodePlex 310
command line

FFmpeg 149
commanding 399
commands

ALTER DATABASE 301
BACKUP 312
CREATE DATABASE 299, 312
CREATE TABLE 310
create tokenpolicy 394
create-deployment 427
GRANT 309
makecert 423
publish 45
REVOKE 309
swap-deployment 429
USE 311

common code base 105–109
common scenarios

far-data scenarios 312
near-data scenarios 313

communicating
across roles 344–345
with worker roles 338–345

compatibility 311
concurrency 340, 372
configuration 59–61, 407

changing at runtime 61
roles 62
separation of concerns 61

configuration managers 420
configuration settings

defining the interface 107
pluggable 107–109
sharing 106
tracking 103
tweaking 104
using inversion of control

pattern 107–109
ConfigurationChangePoll-

Interval property 415
ConfigurationManager class 61
ConfigurationSettings node 60
ConfigurationSettings.aspx file

99
configuring

application build configura-
tion 104

certificates 97–98
database connection strings

104
diagnostic agents 409–419
diagnostic hosts 411–416
endpoints 105
roles from outside 415
runtime settings 98–101
service definition file 100
service model 37
the ACS namespace 392–396

confirmation message 374
connecting

to databases 299–300
to Service Bus 400
to services 401

connection strings 171, 299,
303, 311, 413

UseDevelopmentStorage
option 409

console applications
creating tables using REST

272
consumer 358
containers

and REST 182–185
creating 173
default permissions 175
deleting 177
downloading BLOBs from

193–195
for BLOB data 163, 166
full public read acess 167
listing 175, 185
listing with Service Manage-

ment API 424–425
public 196
public read-only access 167
setting shared access

permissions 207
when to use 169–178

content delivery networks 225,
232–236

advantages of 233–234
defined 232
edge servers 232
Windows Azure CDN

234–236
ContentEncoding property 202
ContentLanguage property 202
ContentMD5 property 202
ContentType property 202
context class 257

adding entities to 258–259

ContinueOnError parameter
283

contracts 343
control logic 434

upper boundary 434
control system 434
controllers

risks 435
stateful 435

controlling
access 381–384

controls
MediaElement 225

conversion rate 346
copying

BLOBs 204–206
with StorageClient library 206

cost 314
in-memory joins 328
SQL Azure 318
Table service 319

count 372
CounterSpecifier property 412
crash dumps 407, 417
CrashDumps class 407
CREATE DATABASE command

299, 312
Create method 175, 364
CREATE TABLE command 310
create tokenpolicy command

394
create-deployment command

427
CreateHttpRequest method 268
CreateIfNotExist method

364–365
CreateTableIfNotExist method

255
creating

an AppFabric namespace 385
context class 257
databases 298, 304
queues 365
queues at startup 376
simple web page 33–39
static websites 210–212
tables 253–255
tables using AtomPub stan-

dard 271
tables using REST 271–273
user accounts 300, 308–309

critical 406
cross-domain policy file 217
CRUD operations

with Table service 256–264

INDEX442
csmanage tool 426
changing configuration 430

CSmonitor tool 29
CSpack tool 29, 45
CSrun tool 29
CSS 33–36
CurrentRoleInstance property

343

D

DAS. See direct-attached storage
data

and firewalls 307
Azure Drive 162
backing up 305–307
batching 281
binding in code-behind 36
BLOB data 16, 160–163
blocks 17
caching 135–138, 321–322
direct-attached storage 159
drop-down lists 317
duplicating versus joining 329
filtering 414
filtering with LINQ 290–291
filtering with REST 288–290
infrequently changed

329–331
joining 329–331
joining uncached data

330–331
merging 279
merging or updating with

REST 281
MIME type 193, 195
moving 305–307
network-attached storage 159
on-demand transfers 420–421
paging 294
partitioning 249–252
partitioning with SQL Azure

301–302
peer-to-peer 158
persisting in ASP.NET 127
querying 284–294
referential integrity 326
replication 158, 250
retrieving 324
retrieving from Memcached

137
scheduled transfers 419
selecting using LINQ syntax

292–294
serialized binary 367

setting up storage
environment 43–45

sharding 302–303
shared network drive 157
shared storage 16
sharing across machines 156
sharing with DFS 158
sharing with SQL Server 157
shopping cart example

323–331
single instruction, multiple

data 371
static reference data 316–322
storage area networks 159
storing 323–329
storing in Memcached 137
storing in tables 18
storing in the cloud 15–18
storing session data 128–130
synchronizing 330
transferring diagnostic data

419–421
validating 350
working with in SQL Azure

306
data access layer 303
data centers

administration 54
CBlox 53
density 53
edge data centers 54
edge servers 232
first generation 52
Generation 2 53
Generation 3 53–54
Generation 4 55
hardware 55
history 52
lights-out operations 54
managing 21
modular 54
power and cooling costs 52
reducing carbon footprint 52
System Center Operations

Manager 54
data model

splitting across multiple
servers 325

data replication 250
data sources

arbitrary files 407
arbitrary sources 416, 418
common 407
crash dumps 407, 417
diagnostic 407

diagnostic infrastructure logs
408

failed request logs 418
IIS failed request logs 408
IIS logs 408
performance counters 408
trace logs 408
Windows event logs 408, 418

data synchronization 330
database connection strings

configuring 104
database size limits 300–303

1 GB 300
10 GB 301

databases
allowing Azure connections

300
analyzing 310
configuring connection

strings 104
connecting to 299–300
connection string 299, 311
creating 298, 304
dbmanager role 309
loginmanager role 308
managing 305–309
mapping entities to 243
scaling issues 239
size limits 300–303

DataServicesContext class 257
dbmanager role 309
DDOS. See distributed denial-of-

service attacks
debugging 405–406
decoupling 377

with messaging 358–363
defining

endpoints 82–85, 341
local storage 199
services 81–90

Delete method 175, 364
DELETE verb 269
DeleteMessage method 368
DeleteTable method 269
deleting

BLOB data 192
containers 177
entities 261–262, 277–279
messages 368
optimizing delete

performance 278–279
queues 366
tables using REST 269

denial of service attacks. See
distributed denial-of-
service attacks

INDEX 443
dependency injection 352
deploying

applications 45–47, 427
new service configuration file

431
tearing down 429
with Azure portal 39–47

deployment
automating 424–430

DeploymentDiagnosticManager
class 416

design patterns
Itinerary pattern 351
message processing 371–378
Singleton pattern 348
Unit of Work pattern 276

developing
common code base 105–109
with Table service 252–255

development fabric 9, 56
adding certificates 91
defined 14
development fabric service 31
diagnostics 409
Fabric Controller 14, 57–59
load balancer 120
load balancer process 122
running applications 38
running web pages 12
selecting ports 84
UI 39, 411

development storage 167–169,
171–173

communicating with 173
installation issues 168
listing containers 185
listing tables 266–269
service definition file settings

172
SQL Server backing store 168
starting and stopping manually

169
switching to live storage

178–179
user interfaces 168

DevelopmentStorageAccount
property 172

DFS
sharing data with 158

DFUI tool 29
diagnostic agents

buffering 411
configuring 409–419
configuring within a role

411–413

default configuration 411
diagnostic infrastructure logs

411
GAS process 411
IIS logs 411
listeners 409
See also logging
trace listeners 409

diagnostic hosts
configuring 411–416

diagnostic infrastructure logs
408, 411

diagnostic managers 415
diagnostic sources

managing 407–408
DiagnosticMonitorConfigura-

tion class
ConfigurationChange-

PollInterval property 415
diagnostics 405–421

arbitrary sources 416
Azure Diagnostics 405
configuring diagnostic agent

409–419
configuring the host 411–416
crash dumps 407
default configuration 411
diagnostic infrastructure logs

411
diagnostic managers 415
exceptions 407
GAS process 411
IIS logs 411
managing sources 407–408
MonAgentHost tool 406
on-demand transfers 420–421
scheduled transfers 419
transferring diagnostic data

419–421
Visual Studio 409

diagnostics agents
configuring roles from

outside 415
filtering data 414

Diagnostics assembly 34
diagnostics. See system logs
DiagnosticsConfigurationString

413
direct-attached storage 159
directory structure 214
DirectoryConfiguration class

407, 418
disaster recovery 306
distributed denial-of-service

attacks 83, 432

Distributed File System. See DFS
distributed transactions 312
DLLs

kernel32.dll 150
Microsoft.WindowsAzure.

StorageClient.dll 171
with P/Invoke 150

DNS 41
DoesQueueExist method 365
domains

associating with BLOB
data 164

CNAME entries 166
setting up 165
validating 165

DownloadByteArray method
195

downloading
BLOB data 193–195
BLOBs from private

containers 193–195
BLOBs from public containers

193
progressive. See chunking

DownloadText method 195
DownloadToFile method 148,

195
drawbacks

queuing 340
drivers

and Fabric Controller 58
drop-down lists 317

populating 321
DSinit tool 29
durability 340, 368
dynamic data

joining with infrequently
changed data 329–331

shopping cart example
323–329

storing with reference data
323–329

dynamic ports 344
dynamic queues 376

E

echo 146
Eclipse 29, 140
edge data centers 54
edge servers 232
EDI 376
elements

traceFailedRequests 408
EnableConnection method 417

INDEX444
EnableConnectionToDirectory
method 417

enableNativeCodeExecution
attribute 141

enableNativeExecution attribute
86

enabling
native execution 119
Windows Azure CDN 235

endpoints
BLOB data 171
configuring 105
configuring for certificates 92
defining 82–85, 341
external 105
for Table service 266
input 342, 345
internal 344–345
service endpoints 339, 343
worker role endpoints 85
worker roles 341

enterprise service bus. See Ser-
vice Bus

entities
adding to context class

258–259
and context class 257
challenges of extending defi-

nitions 248
CRUD operations with REST

275–281
defining 253
deleting 261–262, 277–279
dissimilar 247–249
entity group transactions

282–284
extending definitions 246
inserting 275–277
inserting with REST 276
listing 260–261
mapping to databases 243
modifying definitions

244–245
modifying to use Table service

244–249
optimizing delete perfor-

mance 278–279
querying with REST 289
representing in C# 241
representing in Table service

245–247
retrieving using REST 285
returning with REST 289
shopping cart 327
SizeType entity 318

SQL Server versus Table ser-
vice 245

storing in SQL Server 242
updating 263–264, 279–281

entity definitions 244–245, 253
challenges of extending 248
extending 246

entity group transactions
282–284

enumeration types
LogLevel 410

eq query expression 289
equality comparisons 290
Etag property 202
events

Application_Start 348
Changed 103
Changing 103
OnStart 411
RoleEnvironmentChanging

430
Session_Start 348
Stopping 89

eventually consistent scenarios
372

exceptions 370, 407
Out of Memory 131

ExecuteCommand method 147,
149

expired tokens 389
Extensible Hypertext Markup

Language. See XHTML
external process 146–149

F

Fabric Controller 14, 42, 57–59,
347

and service model 59–62
and services 58
as kernel 15, 57
defined 15
driver model 58
fault domains 63
how it works 58
instance management 59
resource allocation 58
service configuration file

94–103
starting a site 428
update domains 63

fabric. See development fabric;
production fabric; and
storage fabric

factory 353

failed instances 340
failed request logs 418
far-data scenarios 312
FastCGI 140–146

configuring Windows Azure
for 142–143

enabling 142
FastCgiModule 143
fault domains 63
fault tolerance 21

separate server racks 21
federated identity 382
FFmpeg 146–149

at command line 149
FIFO. See First in First Out
FileName property 148
file-reading code

centralizing 61
files

app.config 60, 400
ConfigurationSettings.aspx

99
cross-domain policy file 217
directory structure 214
global.asax 348
Microsoft.WindowsAzure.

StorageClient.dll 171
MIME type 193, 195
php-cgi.exe 145
service configuration file 59,

94–103, 342, 430
service definition file 59, 62,

81–90, 354
ServiceConfiguration.cscfg

38, 45
ServiceDefinition.csdef 38
temporary 353
web.config 60, 99, 143, 409
web.roleConfig 142, 145
WebRole.cs 409

filtering
data 414
web role traffic 82
with LINQ 290–291
with REST 288–290

FindByThumbprint method 98
FindFirstFile method 151

lpFileName parameter 150
lpFindFileData parameter

150
FindNextFile method 150–151
firewall_rules table 307
firewalls 307

firewall_rules table 307
managing with code 307

INDEX 445
First in First Out 359
flipping 42

VIP swap 42
flow diagram 350
folders

bin 29
inc 29
Roles folder 34

forklift upgrades. See static up-
grades

FromConfigurationSetting
method 173, 364

frontend
offloading work 345–346

full trust 139, 141

G

garbage collection 361
ge query expression 289
Generation 2 data centers 53
Generation 3 data centers

53–54
administration 54
hardware 55
lights-out operations 54
System Center Operations

Manager 54
Generation 4 data centers 55
GET verb 201, 267, 365, 373
GetBlobReference method 174
GetConfigurationSettingValue

method 106, 109, 416
GetContainerReference method

174, 190
GetLocalResource method 88,

354
MaximumSizeInMegabytes

property 88
Name property 88
RootPath property 88

GetMaximumSizeInMegabytes
property 88

GetMessage method 368–369
GetTokenFromACS method

391
global.asax file 348
GRANT command 309
grids

optimizing delete perfor-
mance 278

GridView component 175
gt query expression 289
guaranteed ordered delivery

376

H

handlers 143
HEAD verb 201–203
headers

Authorization header 274,
363, 388

If-Match 281
version header 425

healthy services 404
heap tables 312
hosted services 426
HostedService class 425
hosting

applications in BLOB storage
215–223

Silverlight Spectrum emulator
215–217

static websites 209–210
HSS Web App role 39
HTTP Get requests

for BLOB data 163
HTTP handlers 196–198

and local storage 200
checking last modified time

202
creating 197
registering 198

HTTP protocol 127, 160
and web roles 82
handlers 197–198
HEAD verb 201–202
internal endpoints 85

HTTPS protocol 32, 422
and web roles 82

Hyper-V 68–72
booting servers 69–71
core-and-socket parking 68
optimization for Windows

Azure 69

I

ICanHazCheeseburger 146
idempotent 370
identity 381

federated 382
identity fishbowl 382
identity stores 381
web identity 402

identity fishbowl 382
identity stores 381
If-Match header 281
IIS 143, 380
IIS 7.0 log 411

IIS failed request logs 408
IIS logs 408
IIS. See Internet Information Ser-

vices
images 71

updating 71
inbound queue 373
inc folder 29
indexes

clustered 312
indexing

and partitioning 251
indirection 398
infinite loops 374

ceiling 374
delay 374
floor 375
sleeping 374

infrastructure layer 305
Initialize method 109
in-memory joins 328
input endpoints 342, 345
installing

Windows Azure SDK 9
InstanceEndpoints property 343
instances

failed 340
multiple 119–120
setting number of 96

integrating
BLOBs with ASP.NET

195–199
private content 196–199

interfaces
defining 107
implementing in web applica-

tions 107
implementing in web roles

107
IPrincipal 397

internal endpoints 344–345
Internet Information Services

FastCGI 141–146
hostable web core 76
reconfiguring local instance

142
running web roles 80
viewing host process 75

inter-role communication 340,
344–345

inversion of control pattern
configuration settings

107–109
Unity Application Block

framework 107–108

INDEX446
IoC pattern. See inversion of con-
trol pattern

IP addresses 308
IPrincipal interfaces 397
IsAvailable method 109
IsAvailable property 80, 106
isolated storage 231
issuers 382, 392–393
Itenerary pattern 351

J

job scheduler 336
joins 329–331

client-side 330–331
compared to duplication 329
in-memory 328

K

kernel 15
kernel32.dll 150

FindFirstFile method 150
FindNextFile method 150

keys
management key 387
public 423
signing 388
symmetric 387

L

Last in Last out 359
Last-Modified tag 201
LastModifiedUtc property 202
le query expression 289
LeaseStatus property 202
least priveleged trust 140
legacy code 353
Length property 202
libraries

storage client library 148
StorageClient 170, 188–193
WCF Data Services 270

LIFO. See Last in Last out
lights-out operations 54
limitations 311–312
links 37
LINQ

filtering with 290–291
querying with 288
syntax 292–294

LINQ to DataSet 243
LINQ to Objects 291

LINQ2Entities 292
LINQ2SQL 292
ListBlobs method 175
ListBlobsWithPrefix method

174
ListContainers method 174
listen 400
listeners 409
listing

entities 260–261
queues 364
services and containers with

Service Management API
424–425

services with REST 424
ListQueues method 364
live IDs 39
live storage

access key 179
switching from development

storage 178–179
load balancer 13, 340, 344

asynchronous AJAX requests
124

balancing a multi-instance
application 119–120

development fabric 120
how it works 118–127
in live environment 124–127
primary functions 14
quirkiness 126
requests 252
simulating 120
testing in live environment

126
testing in staging environment

124–126
testing with multiple browser

instances 122
Visual Studio Team System

Web Load Tester 124
WaWebHost service 120

LoadedBehavior attribute 225
local drives 353
local storage 353–355

accessing 199
and HTTP handlers 200
benefits of 87
configuring 87–90
defining 199
RequestRecycle method 89
setting up 87, 353
temporary files 353
using 88
with BLOB storage 199–204

LocalResource class 354
RootPath property 354

LocalStorage tag 353
logging 43, 405

diagnostic agent 43
diagnostic infrastructure logs

411
IIS 411
LogLevel enumerated type

410
requests 214

logical separation 347
login 308
loginmanager role 308
LogLevel enumeration type 410
long queues 377
loose coupling

with messaging 358–363
lpFileName parameter 150
lpFindFileData parameter 150
lt query expression 289
Lucene.NET 331

M

magic string 171
makecert tool 90, 423
management account 297
management certificates 423
management key 387
managing

BLOB storage 162
caches 135–138
databases 305–309
diagnostic data sources 407
diagnostic sources 407–408
in-process sessions 130–132
risk 434–435
service health 435
worker roles 352

managing with StorageClient
library

managing BLOB data 188–193
master database 298
MAXSIZE parameter 299
media server

BLOB storage as 223–232
streaming 223

MediaElement control 225
LoadedBehavior attribute 225

mega data centers. See Genera-
tion 3 data centers

Memcached 136–137
retrieving data from 137
storing data 137

INDEX 447
memory caching 135
memory consumption 131
memory leak 151
MERGE verb 281
message queues 17
message size 360
message visibility 369–371

explained 369–370
setting timeout 370

messages
adding to queue 367
asynchronous 373
confirmation 374
consumer 358
content 361
decoupling 358–363
defined 360–361
deleting 368
failure 370
getting 368
guaranteed ordered delivery

376
how messaging works 358–360
idempotent code 370
message size 360
peeking at 367
persisting 362
poison messages 366
pop receipt 369
processing 371–378
producer 358
properties 361
pull 338
push 338
queuing 339–340, 360
setting timeout 370
shared counters 371–372
single instruction, multiple

data 371
stale 361
state 350
timeout 369
truncated exponential backoff

374–375
visibility 369–371
work complete receipt 373

messaging. See messages
metadata

and BLOB data 203–204
queuing 362, 365

metered services 4
methods

AddMethod 367
Clear 364
Create 175, 364

CreateHttpRequest 268
CreateIfNotExist 364–365
CreateTableIfNotExist 255
Delete 175, 364
DeleteMessage 368
DeleteTable 269
DoesQueueExist 365
DownloadByteArray 195
DownloadText 195
DownloadToFile 148, 195
EnableConnection 417
EnableConnectionToDirectory

417
ExecuteCommand 147, 149
FindByThumbprint 98
FindFirstFile 150–151
FindNextFile 150–151
FromConfigurationSetting

173, 364
GetBlobReference 174
GetConfigurationSettingValue

106, 109, 416
GetContainerReference 174,

190
GetLocalResource 88, 354
GetMessage 369
GetMessages 368
GetTokenFromACS 391
Initialize 109
IsAvailable 109
ListBlobs 175
ListBlobsWithPrefix 174
ListContainers 174
ListQueues 364
OnStart 409
OnStop 421
Page_Load 177
PeekMessage 368
PeekMessages 368
phpinfo 146
RequestRecycle 89
RetrieveApproximateMessage-

Count 371
Run 147, 338
SetConfigurationSetting-

Publisher 177
SetMetadata 364–365
SignRequest 186
UploadBlobMetadata 204
UploadFile 148, 192
UploadFromStream 192
UploadText 192
UrlDecode 392

me-ware 364
MEX 343

Microsoft
history 51
Ray Ozzie 52

Microsoft Windows. See Windows
Microsoft.WindowsAzure name-

space 34
Microsoft.WindowsAzure.Diag-

nostics namespace 410
Microsoft.WindowsAzure.Ser-

viceRuntime assembly
79–81, 107

adding to applications 79
RoleEnvironment class 80,

88, 109
Microsoft.WindowsAzure.Stor-

ageClient assembly 252
Microsoft.WindowsAzure.Stor-

ageClient namespace 185
CloudBlobDirectory class 214
DownloadByteArray method

195
DownloadText method 195
DownloadToFile method 195
See also StorageClient library
UploadFile method 192
UploadFromStream method

192
UploadText method 192

Microsoft.WindowsAzure.Stor-
ageClient.dll 171

migrating 149
SQL Azure Migration Wizard

310–311
SQL Server to SQL Azure 307
to SQL Azure 309–311
traditional approach 309

MIME type 193, 195, 213
modifying

entities for Table service
244–249

entity definitions 244–245
modules

FastCGIModule 143
MonAgentHost tool 406
multithreading 347

N

Name property 88
namespaces

ACS namespace 392–396
AppFabric 385
issuers 392–393
Microsoft.WindowsAzure 34

INDEX448
namespaces (continued)
Microsoft.WindowsAzure.

Diagnostics 410
Microsoft.WindowsAzure.Stor-

ageClient 185
See also StorageClient library

rules 392, 395–396
scopes 392, 394
System.Runtime.InteropSer-

vices 150
token policies 392–393

NAS. See network-attached storage
NAT 399
native code

in processes 146–149
with FastCGI 141–146
with P/Invoke 149–152

native execution
enabling 119

native libraries 149
32-bit 150
64 bit 150

ne query expression 289
near-data scenarios 313
network address translation 399
network-attached storage 159
nodes

ConfigurationSettings 60
None parameter 283
not query expression 289
n-tier architecture 398
NULL 374

O

OAuth standard 383
future of 402
SWT 384

on-demand transfers 420–421
OnDemandTransferOptions

class 420
OnStart event 411
OnStart method 409
OnStop method 421
open source 140, 146
or query expression 289
orchestration 397
origin server 233

BLOB storage as 235
Out of Memory exception 131
outbound queue 373
overhead 350

P

P/Invoke 149–152
and native libraries 150
pinvoke.net website 150

packaging
applications 45–47

Page_Load method 177
paging data 294
Parallel Extensions for .NET

347
parameters

AccountName 45
Batch 283
cleanOnRoleRecycle 354
ContinueOnError 283
lpFileName 150
lpFindFileData 150
MAXSIZE 299
None 283

partial trust 140
partitioning 434

across many servers 249–252
and indexing 251
querying across partitions 326
row keys 251
shopping cart example

324–326
splitting the data model 325
storage account 249–250
tables 250–252
with SQL Azure 301–302
with Table service 327

PartitionKey property 244, 253
password 385
pattern 378
PDC 297, 380
PDC09. See Windows Azure plat-

form
peeking 367
PeekMessage method 368
PeekMessages method 368
performance 361, 376

asynchronous calls 320
queuing 358
synchronous calls 320

performance counters 408, 412
PerformanceCounterConfigura-

tion class 408, 412
permissions

shared acess permissions 206
persisting

messages 362
PHP 141, 146

configuring Windows Azure
for 142–143

handlers 143
in the cloud 143–146
running in Windows Azure 142

php-cgi.exe file 145
phpinfo method 146
physical implementation 311
pig in a python 349, 352
pinvoke.net website 150
pluggable configuration settings

107–109
calling correct implementaion

108
defining interface 107
implementing interface 107

podcasting 15, 17, 156, 170, 182,
204

poison messages 366
polling 336

floor 375
infinite loops 374
tables 340

pop receipt 369
populating

drop-down lists 321
populating caches 321
ports 312

dynamic 344
POST verb 271, 373
Preboot Execution Environment

70
prefix queries 291
processes 149

32-bit 148
64-bit 148
background 146
external 146–149
hosting process 75
RDAgent 76
small 349
viewing 74
WaWebHost 75

processing
at runtime 351
messages 371–378
requests 187

processing engine 351
producer 358
production fabric

adding certificates to 91
replicas 304

progressive downloading. See
chunking

properties
ApproximateMessageCount

371

INDEX 449
properties (continued)
Arguments 148
AsBytes 368
AsString 368
BackOffPace 366
BlobType 202
CacheControl 202
ConfigurationChangePoll-

Interval 415
ContentEncoding 202
ContentLanguage 202
ContentMD5 202
ContentType 202
CounterSpecifier 412
CurrentRoleInstance 343
DevelopmentStorageAccount

172
Etag 202
FileName 148
GetMaximumSizeInMegabytes

88
InstanceEndpoints 343
IsAvailable 80, 106
LastModifiedUtc 202
LeaseStatus 202
Length 202
Name 88
PartitionKey 244, 253
RefreshInterval 366
RootPath 88, 354
RowKey 244, 253
ScheduledTransferPeriod 419
Timestamp 244–245, 253

protected resources 382
protocols

HTTP 82, 127, 160
HTTPS 82, 422
TDS 24, 300, 311
WRAP 383

public keys 423
publish command 45
pulling messages 338
pushing messages 338
PUT verb 281
PXE 70
Python 139

Q

queries
query expressions 289

query expressions 289
and 289
eq 289
ge 289

gt 289
le 289
lt 289
ne 289
not 289
or 289

query shaping 292
querying

across partitions 326
Boolean logic 291
data 284–294
entities with REST 289
equality comparisons 290
LINQ syntax 292–294
LINQ to Objects 291
LINQ2Entities 292
LINQ2SQL 292
prefix queries 291
query shaping 292
range comparisons 290
SELECT statement 292
with LINQ 288

queue browser 363
queue depth 358
queue operations 364
Queue service 340
queuing

adding messages to queue
367

and REST 362
and state 350
and StorageClient library 362
asymmetric 373
basic operations 363–366
caching 359
concurrency 340
creating at startup 376
creating queues 365
decoupling 358–363
defined 361
delay 374
deleting messages 368
deleting queues 366
depth 358
drawbacks 340
durability 340
dynamic versus static 376
failure 370
First In First Out 359
floor 375
GET verb 365
getting messages 368
guaranteed ordered delivery

376
idempotent code 370

inbound 373
Last In Last Out 359
listing queues 364
long queues 377
loop ceiling 374
message content 361
message properties 361
messages 339–340, 360
metadata 362, 365
naming conventions 362
one-way 359
outbound 373
performance 358
persisting messages 362
polling 336
queue browser 363–366
recoverability 340
scaling dynamically 377
shared counters 371–372
single instruction, multiple

data 371
strict ordered delivery 359
symmetric 373
truncated exponential backoff

374–375
work complete receipt 373

R

range comparisons 290
Range request header 226
Ray Ozzie 52
RDAgent process 76
recoverability 340
reducing software maintenance

22
redundancy 306, 361
reference data

caching 321
shopping cart example

323–329
static 316–322
storing with dynamic data

323–329
references

referential integrity 326
referential integrity 326
RefreshInterval property 366
relational databases

scaling issues 239
when to use 241

relay 400
relying party 382
repair and resubmit 351
replay attacks 393

INDEX450
replicas 304, 307
replication 250

BLOB storage 161
latency 161
with DFS 158

representing
static data 316–318
static data in Table service

318–319
request headers 184, 362

Authorization 187
Range 226
x-ms-copy-source 205
x-ms-date 184, 186
x-ms-version 184

request signing 268
RequestRecycle method 89
requests

authenticating 185–188,
273–275

headers 184
load balancing 118–127, 252
logging 214
maximum request length 191
naming convention 184
private 185–188
processing 187
request signing 268
signing 187

resources
allocating 58
dynamic allocation 430
protected 382

response headers 203
custom metadata 203

REST 160, 170, 368, 379, 392
and queuing 362
and storage account 266–273
and Table service 252
API 181
authenticating requests

185–188
changing configuration 430
checking API version 184
creating tables in console

applications 272
creating tables with 271–273
CRUD operations 275–281
deleting entities 277–279
deleting tables with 269
filtering data 288–290
inserting entities 276
listing BLOB data 182–185
listing services 424
listing tables 266–269

merging or updating data 281
query expressions 289
querying data 284–294
request headers 362
retrieving entities 285
returning single entity 289
Service Management API 422
shared key authentication

273
Shared Key Lite authentica-

tion 274
updating entities 279–281

REST API 181
checking version 184

restarting
WaWebHost service 123

retries 284
RetrieveApproximateMessage-

Count method 371
retrieving

data 324
reversing strings 337
REVOKE command 309
risk 306, 434–435

backoff process 435
controllers 435

role based access control 384
RoleEntryPoint class 421
RoleEnvironment class 80, 109,

345
accessing runtime settings

101
callback to RoleEnvironment

109
callback to RoleHost 109
Changed event 103
Changing event 103
CurrentRoleInstance property

343
GetConfigurationSetting-

Value method 106, 109
GetLocalResource method 88
Initialize method 109
IsAvailable method 109
IsAvailable property 80, 106
RequestRecycle method 89
Stopping event 89

RoleEnvironmentChanging
event 430

RoleInstance class
InstanceEndpoints property

343
RoleInstanceDiagnosticManager

class 415
RoleInstanceDiagnosticMan-

agersForRole class 420

RoleManager class 348
RoleRoot macro 143
roles 8, 62

and shared storage 16
configuring diagnostic agents

411–413
configuring from outside 415
configuring in Visual Studio

62
configuring runtime settings

98–101
creating 11
dbmanager 309
HSS Web App role 39
inter-role communication

344–345
loginmanager 308
modifying runtime settings

102
recycling 89
service definition file 59
virtual machine sizes 62
web roles 72–76
worker roles 14

Roles folder 34
rolling upgrades 66

automatic 66
manual 66

RootPath property 88, 354
routing logic 349, 352
row keys

partitioning 251
RowKey property 244, 253
Ruby 139
rules 392, 395–396
Run method 147, 338
running

web pages 12
runtime 351

changing configuration 61
runtime settings

accessing 101
configuring 98–101
for ASP.NET applications 99
modifying in Azure portal

102–103
tweaking 104

S

SAN 305
SAN. See storage area networks
SaveChangesOptions

Batch parameter 283

INDEX 451
SaveChangesOptions enumera-
tion

ContinueOnError parameter
283

None parameter 283
scalability 346

BLOB storage 160
data sharding 302–303
on-demand 19
queuing 377
SQL Azure 24
traffic surges 19
varied usage patterns 20

scaling
automatically 432
bulkheads 434
dynamically 430–432
improving 432–436
out 117
out automatically 117
out versus up 118
partitioning 434
risk 434–435
shunting 434
thermostat example 433
up 118

scheduled transfers 419
ScheduledTransferPeriod

property 419
schema 312

sharding 302
scopes 392, 394
SDK. See Windows Azure SDK
secure tokens 390
security 382

accepting SWT tokens
388–389

attaching tokens 392
audience 391
authorization tokens 383–384
checking tokens 389
claims 384
denial of service attacks 432
management key 387
OAuth standard 383
replay attacks 393
setting up Access Control

Service 385–387
shared secret 385

SELECT statements 292
self-signed certificates 423
separation of concerns 61
serialized binary data 367
server applications 7

building 9–13

building with Visual Studio
10–13

creating 33–39
CSS and XHTML 34–36
deploying with Azure portal

39–47
fault tolerance 21
flipping 42
logging 43
running across multiple serv-

ers 7
running in development

fabric 38
running locally 37
setting up storage environ-

ment 43–45
supported types 9
using local storage 32

server login 309
server name 297
servers

administration 54
authorization server 382
backend 346
booting 69–71
CBlox 53
partitioning 249–252
scaling 117–118, 346
scaling out 117
scaling up 118
server name 297
simulating extreme load 115
trusted authority 382
under extreme load 116
under normal load 114

Service Bus 381, 397–399
connecting to 400
connecting to services 401
defined 397–398
reasons to use 398–399

service bus 351
service configuration file 59,

94–103, 342
adding settings to 100
changing 430
configuring certificates 97–98
configuring multiple roles 96
deploying new version 431
format 95
runtime settings 98–101
service model 430
setting number of instances

96
standard settings 96
storing account details 172

switching to live storage 178
updating with Azure portal

102
service definition file 59, 62,

81–90, 354
adding configuration settings

to 100
and certificates 92
ConfigurationSettings section

100
defining endpoints 82–85
editing in Visual Studio 83
enabling native execution

119
format 81
Instances section 86
Internal Endpoint section 84
selecting ports 84
setting trust level 86
setting up local storage 87
Startup Action section 86
storage settings 172
worker role endpoints 85

service endpoints 339, 343
service health 435
service host 343
Service Level Agreement 301
service management API 78,

421–432
listing services and containers

424–425
REST 422
rolling upgrades 67
setting up 422–424
static upgrades 66
things it can’t do 422

service model 59–62
configuration 59–61
example 64
fault domains 63
roles 62
service definition file 81–90
update domains 63
virtual machines 62

service models 430
service names 41
service oriented architecture

397
service packages 427
service registries 397
ServiceAuthorizationManager

class 388
ServiceConfiguration.cscfg

file 38, 45

INDEX452
ServiceConfiguration.cscfg file.
See service configuration file

ServiceConfiguration.csdef
file 342

ServiceDefinition.csdef file 38
ServiceHost 342
ServiceHost class 342
ServiceRuntime assembly 34
services

Access Control Service
381–384

affinity groups 41
and Fabric Controller 58
choosing a name 41
configuration 59–61
connecting clients to each

other 398
connecting to 401
connecting to Service Bus 400
defining 81–90
development fabric service 31
development storage service

31
enterprise service bus. See Ser-

vice Bus
exposing 340–344
exposing to multiple vendors

398
fault domains 63
healthy 404
hosted 426
listing with service manage-

ment API 424–425
managing health 435
naming 397
new service wizard 41
orchestration 397
Queue 340
Service Bus 381, 397–399
service configuration file 59
service definition file 59
service model 59–62
service packages 427
service registries 397
service-oriented architecture

397
setting up 41
supporting with SQL Server

31
Table service 240–264
tracking configuration

settings 103
update domains 63
upgrading 64–68
upgrading. See upgrading
version 362

WaWebHost 109
WCF 341
worker role service 336–338

sessions 127–134
cache-based provider 138
how they work 127
killing WaWebHost service

130
managing in-process 130–132
memory consumption 131
SQL session state 135
sticky 158
storing session data 128–130
Table storage state 132–134
with multiple web role

instances 131
Session_Start event 348
SetConfigurationSettingPub-

lisher method 177
SetMetadata method 364–365
setting

MIME type 213
permissions 206

sharding 302–303
shared access permissions 206
Shared Access Signatures 198,

207
shared counters 371–372
shared key authentication 273
Shared Key Lite authentication

274
shared secret 385, 400
sharing

across machines 156
BLOB data 160–163
difficulties 156
shared network drive 157
storage area networks 159
with DFS 158
with SQL Server 157

shopping cart scenario 345
shunting 434
signaling 399
signing key 388
signing requests 187
SignRequest method 186
Silverlight 390

isolated storage 231
Silverlight applications

building a media player 224
chunking 228–232
communicating with third-

party sites 217–223
hosting 215–223
restricted headers 230

Spectrum emulator 215–217
web search application

219–223
single instruction, multiple data

371
Singleton pattern 348
SizeType entity 318
SLA. See Service Level Agreement
sleeping

infinite loops 374
snapshot isolation 283
snapshotting 206
SOA. See service-oriented archi-

tecture
Software Development Kit. See

Windows Azure SDK
source 416
spawn process 149
sp_delete_firewall_rule stored

procedure 307
sp_set_firewall_rule storage

procedure 307
SQL Azure 4, 23–24

ALTER DATABASE command
301

and SQL Server Management
Studio 307

bandwidth 301
billing 305
Business Edition 301
checking SQL version 305
common scenarios 312–314
connecting to databases

299–300
connection routing 305
cost issues 318
CREATE DATABASE

command 299
creating databases 298
creating user accounts 300,

308–309
database size limits 300–303
defined 24
far-data scenarios 312
firewalls 307
history 297
how it works 303–305
infrastructure layer 305
limitations 311–312
logical structure 304
management account 297
MAXSIZE parameter 299
migrating from SQL Server

307
migrating to 309–311

INDEX 453
SQL Azure (continued)
Migration Wizard 310–311
near-data scenarios 313
partitioning with 301–302
physical structure 304–305
provisioning 305
querying across partitions 326
referential integrity 326
replicas 304
representing static data

316–318
scalability 24
security 24
setting up 297–300
shopping cart example

323–331
SQL Server Integration

Services 307
traditional migration

approach 309
Web Edition 300
working with data 306

SQL Azure Business Edition 301
SQL Azure firewall 297
SQL Azure Migration Wizard

310–311
SQL Azure Web Edition 300
SQL Data Services. See SQL Azure
SQL Firewall 299
SQL Server

and cloud computing. See
SQL Azure

backing store 168
checking version 305
in the cloud 23–24
mapping entities to databases

243
migrating to SQL Azure 307,

309–311
sharing data with 157
SQL Azure 23–24
SQL Server Integration

Services 307
storing entities 242
supporting services with 31
versus Table service 246

SQL Server Data Services. See
SQL Azure

SQL Server Integration Services
307

SQL Server Management Studio
307, 309

SQL Serverr 9
SQLCMD tool 299, 310

SSIS. See SQL Server Integration
Services

SSMS. See SQL Server Manage-
ment Studio

staging environment
differences from production

environment 125
inducing failover 126
testing load balancer 124–126

stale messages 361
starting code 428
start-up costs 19
state 350

busy state 433
state machines 351–352
state-directed worker roles

349–353
state machines 351–352
static data 303

asynchronous performance
320

caching 321–322
in Table service 326–329
in-memory joins 328
reference data 316–322
representing 316–318
representing in Table service

318–319
synchronous performance

320
static queues 376
static upgrades 65–66
sticky sessions 158
Stopping event 89
storage

accessing development
storage 171–173

Azure Drive 162, 169
BLOB storage. See BLOB data
breaking up account 164
creating containers 173
development storage 167–169
direct-attached 159
isolated 231
local 87–90, 353–355
network-attached 159
peer-to-peer 158
setting up account 164
StorageClient library 170
switching from live to develop-

ment storage 178–179
storage account 174

access key 179
BLOB data 163
breaking up 164

listing tables 266–269
partitioning 249–250
registering domain 164
setting affinity 178
setting up 164
storing details in service con-

figuration file 172
using REST 266–273

storage area networks 159, 305
storage clients

Azure Storage Explorer 253
storage environment 9

setting up 43–45
storage fabric 359
storage procedures

sp_set_firewall_rule 307
storage services 426
StorageClient assembly 34
StorageClient library 148, 170,

185
and queuing 362
as REST API wrapper 182
checking BLOB properties

202
copying with 206
deleting entities 277
downloading BLOBs with

193–195
inserting entities 275, 281
listing tables 267
request signing 268
retries 284
setting custom metadata 204
Unit of Work pattern 276

stored procedures
sp_delete_firewall_rule 307

streaming 223
adaptive 225
with WPF 225–228

strict ordered delivery 359
strings

reversing 337
stubs 36
subscription ID 426
suspend 429
swap-deployment command 429
SWT 384
SWT tokens 388–389

attaching 392
checking 389
validating 388

symmetric key 387
symmetric queues 373
synchronous calls

performance 320

INDEX454
synchronous communication
345

system administrator account
307

System Center Operations
Manager 54

system configuration file
DiagnosticsConfiguration-

String 413
system logs 39
System.Data.Services assembly

252
System.Data.Services.Client

assembly 252
System.Runtime.InteropServices

namespace 150
System.ServiceModel namespace

ServiceHost class 342
system.webServer 143

T

Table service 240–264
adding entities 258–259
and REST 252
AtomPub standard 267, 270
authenticating requests

273–275
batching data 281
Boolean logic 291
context class 257
cost issues 319
CRUD operations 256–264
CRUD operations with REST

275–281
deleting entities 261–262,

277–279
developing with 252–255
endpoint URI 266
equality comparisons 290
extending entity definitions

246
inserting entities 275–277
limitations 240
LINQ to Objects queries 291
listing entities 260–261
merging data 279
modifying entities for

244–249
optimizing delete perfor-

mance 278
overview 240
partitioning 249–252, 327
prefix queries 291
query expressions 289

querying data 284–294
querying with LINQ 288
range comparisons 290
representing entities 245–247
representing static data

318–319
shared key authentication

273
Shared Key Lite authentica-

tion 274
shopping cart example

326–329
SizeType entity 318
storing dissimilar entities

247–249
storing table size 319
updating entities 263–264,

279–281
versus SQL Server 246
WCF Data Services 270

Table storage
cleanup 133
performance 133
session state 132–134
testing 133

tables 18
creating 253–255
creating in code 254
creating using AtomPub stan-

dard 271
creating using REST 271–273
creating using REST in con-

sole applications 272
deleting with REST 269
heap tables 312
listing with REST 266–269
listing with StorageClient

library 267
partitioning 250–252
polling 340
retrieving entities using REST

285
row keys 251

Tabular Data Stream protocol.
See TDS protocol

tags
Last-Modified 201
LocalStorage 353
x-ms-request-id 201

TCP 401
TDS protocol 24, 300, 311
templates

worker role template 339
temporary files 353

testing
load balancer 122
under load 123

third-party sites
communicating with 217–223

threads 343, 347
background 348

tick count 413
tight integration 357
time filters 420
time synchronizing 184
timeout 369

setting 370
Timestamp property 244–245,

253
token policies 392–393
tokens 383–384

attaching 392
checking 389
expired 389
OAuth standard 383
replay attacks 393
secure 390
sending as a client 390–391
token policies 392–393
validating 388

tools
analytical and billing tools 39
Azure Storage Explorer 253
BCP 306
Blob Browser 212, 230
csmanage 426
Lucene.NET 331
makecert 90
MonAgentHost 406
SQL Azure Migration Wizard

310–311
SQLCMD 299, 310

trace listeners 409
web.config 408

trace logs 408
traceFailedRequests element 408
tracing 418
tracking

service configuration settings
103

transactional consistency 302
transactions 312

distributed 312
transferring

diagnostic data 419–421
on-demand transfers 420–421
scheduled transfers 419

troubleshooting 406
performance 408

INDEX 455
truncated exponential backoff
374–375

trust 140–141
full trust 86, 141
least priveleged 140
partial trust 86, 140
setting trust level 86

trusted authority 382

U

UI. See user interfaces
Unit of Work pattern 276
unit tests 344
Unity Application Block frame-

work. See inversion of con-
trol pattern

unmanaged code 139
update domains 63

defining number of 63
updating

update domains 63
upgrading 64–68, 376

automatic rolling
upgrades 66

manual rolling upgrades 66
rolling upgrades 66
single role 67
static upgrades 65–66

UploadBlobMetadata method
204

UploadFile method 148–149,
192

UploadFromStream method
192

uploading
BLOB data 191–192

UploadText method 192
upper boundary 434
URIs

queue names 362
UrlDecode method 392
USE command 311
UseDevelopmentStorage option

409
user accounts

creating 308–309
SQL Azure 300

user interfaces
development fabric 39, 411
development storage 168

using
local storage 88

V

validating
data 350
tokens 388

verbs
DELETE 269
GET 201, 267, 365, 373
HEAD 201–203
MERGE 281
POST 271, 373
PUT 281

version header 425
VHDs. See virtual hard drives
viewing processes 74
VIP swap 42, 428

See also static upgrades
virtual hard drives 70
virtual machines 7

anatomy of 8
Hyper-V 68–72
images. See images
RDAgent process 76
running your own 141
sizes 62, 346
viewing hosting process 75
viewing processes 74
web role details 72
web roles 72–76

Visual Basic 11
Visual Basic templates

ASP.NET MVC2 Web Role
template 30

ASP.NET Web Role template
30

Blank Cloud Service template
30

CGI Web Role template 30
WCF Service Web Role

template 30
Worker Role template 30

Visual Studio 144
and AppFarbic 381
building applications with

10–13
Cassini web server 31
certificates 97
Cloud Service templates 29
configuring roles 62
creating applications 33–39,

267
creating roles 11
creating self-signed certifi-

cates 423
creating web pages 12

CSmonitor tool 29
CSpack tool 29
CSrun tool 29
debugging LINQ queries 290
DFUI tool 29
diagnostics 409
DSinit tool 29
editing service definition file

83
makecert tool 90
reversing strings 337
running web pages 12
service configuration file 95
setting up CGI 143
setting up local storage 87
supported versions 10
Team System Web Load Tester

124
templates 9
WCFTestClient.exe 344
worker role templates 339

VMs. See virtual machines
volatile file access 355

W

WAS. See Windows Activation
Service

WaWebHost process 75
WaWebHost service 109

caching 136
killing 126
killing to kill a session 130
multiple instances 120
restarting an instance 123

WCF 343, 388, 400
addresses 343
binding 343
contracts 343
services 341

WCF Data Services 270
querying with LINQ 288
Unit of Work pattern 276

WCF Service Web Role template
30

WCF services 105
WCF. See Windows Communica-

tion Foundation
WCFTestClient.exe tool 344
web applications

implementing interfaces 107
web identity 402
web pages

creating with Visual Studio 12
running 12

INDEX456
Web Request Authorization
Protocol 383

web roles 72–76, 144, 340
and service configuration file

96
caching 135
configuring runtime settings

98–101
details 72
enableNativeExecution

attribute 86
hosting locally 84
implementing interfaces 107
in staging environment 125
making available to other

roles 84
Microsoft.WindowsAzure.Ser-

viceRuntime assembly 79
modifying runtime settings

102
multiple instances for session

state 131
RDAgent process 76
receiving messages 82
recycling 89
running on IIS 80
scaling out 117
scaling out automatically 117
scaling up 118
selecting ports 84
setting number of

instances 86, 96
simulating worker roles

347–349
versus BLOB data 210
versus worker roles 8
viewing hosting process 75
viewing processes 74

web traffic
extreme load 116
normal load 114
scaling 117–118
simulating extreme load 115
testing under load 123
traffic surges 19
usage patterns 20

web.config file 60, 99, 143, 409
appSettings section 99
handlers section 143
httpHandlers section 104
httpModules section 104
issues with using 99
moving elements to cloud ser-

vice definition 105
system.webServer section 418
webServer section 143, 145

web.config trace listener 408
web.roleConfig file 142, 145
WebClient class 391
WebHttpBinding class 387
WebOperationContext class

388, 392
WebRequest class 424
WebRole.cs file 409
WebServiceHost class 387
websites

directory structure 214
publishing to BLOB services

212–215
static 209–210

while loops 339
Windows

supported versions 9
Windows 7

enabling CGI 142
Windows Activation Service 380
Windows Azure

abstraction 56
affinity groups 41
affordability 19
and SQL Server. See SQL Azure
and Visual Studio 10
and Windows XP 10
AppFabric 4, 25–26
as a utility service 19
as cloud operating system 5
Azure portal 39–47
building applications 9–13
capacity 21
conceptualizing 37
configuring for FastCGI and

PHP 142–143
creating roles 11
creating web pages 12
creating worker roles 14
determining busy state 433
development fabric 9, 56
edge servers 232
external processes 146–149
Fabric Controller 14, 57–59
FastCGI 141–146
fault tolerance 21
history 51
hosting applications 6–8
how it works 56–57
improving scaling 432–436
infrastructure 13
introduction 4–8
IP addresses 308
live IDs 39
load balancer 13

logging 43
managing data centers 21
message queues 17
migrating to 80
multiple instances 20
naming convention 184
origin server 233
packaging and deploying

applications 45–47
PHP 142
platform 4–8, 23–26
reacting to varied usage

patterns 20
reduced licensing costs 22
reducing software mainte-

nance 22
roles 8
running applications 6–8
scalability 19
scaling automatically 432
SDK 9, 28
service management API 78
service model 37, 59–62
setting up certificates 90–93
setting up SQL Azure

297–300
setting up storage environ-

ment 43–45
shared storage mechanism 16
signing up for 39
SQL Azure 4
start-up costs 19
storage environment 9
storing data 15–18
tables 18
trust 140–141
using PHP 143–146
virtual machines 7

Windows Azure CDN 234–236
enabling 235

Windows Azure Diagnostics
analyzing visitors 408
arbitrary data sources 418
billing 408
multitenant systems 408
other uses 408
troubleshooting performance

408
Windows Azure platform 23–26
Windows Azure platform App-

Fabric. See AppFabric
Windows Azure SDK 28, 147

bin folder 29
Cloud Service templates 29

INDEX 457
Windows Azure SDK (continued)
creating applications with

33–39
CSmonitor 29
CSpack tool 29, 45
CSrun tool 29
DFUI tool 29
differences from local envi-

ronment 32
DSinit tool 29
folder structure 28
inc folder 29
installing 9

Windows Communication
Foundation 76

Windows event logs 408, 418
Windows Live Writer 270
Windows PE 70
Windows Server 2008

enabling CGI 142
Windows Server AppFabric 25,

380
Windows Server AppFabric

Caching 137
Windows Vista

enabling CGI 142
Windows XP

lack of support for 10
WindowsEventLogsBufferCon-

figuration class 408
WordPress 146

work
asynchronous 347

work complete receipt 373
work ticket 351, 360
worker role service 336–338
worker role template 30, 339
worker roles

and local storage 353–355
application servers 14
as Azure services 351
background threads 348
common uses 345–353
communicating with 338–345
configuring runtime settings

98–101
creating 14
drawbacks of large roles 349
enableNativeCodeExecution

attribute 141
endpoints 85, 341
infinite loops 374
logical separation 347
managing 352
message queues 17
offloading work 345–346
pig in a python 349, 352
pulling messages 338
pushing messages 338
service endpoints 339
shopping cart scenario 345
simulating 347–349

small processes 349
state-directed 349–353
threads 347
versus web roles 8
worker role service 336–338

WPF 390
chunking 225
MediaElement control 225
streaming 225–228

WRAP 389, 392
wrapper 336
WS-* 384

X

x.509 422
X.509 certificates. See certificates
XHTML 33–36
XML Schema Definition

language 83
XML standards 267
x-ms-copy-source request header

205
x-ms-date request header 184,

186
x-ms-request-id tag 201
x-ms-version request header 184
XPath 418
XSD. See XML Schema Defini-

tion language

M
icrosoft Azure is a cloud service with good scalability,
pay-as-you-go service, and a low start-up cost. Based on
Windows, it includes an operating system, developer

services, and a familiar data model.

Azure in Action is a fast-paced tutorial that introduces cloud
development and the Azure platform. Th e book starts with the
logical and physical architecture of an Azure app, and quickly
moves to the core storage services—BLOB storage, tables, and
queues. Th en, it explores designing and scaling frontend and
backend services that run in the cloud. Th rough clear, crisp
examples, you’ll discover all facets of Azure, including the
development fabric, web roles, worker roles, BLOBs, table
storage, queues, and more.

Th is book requires basic C# skills. No prior exposure to cloud
development or Azure is needed.

What’s Inside
Data storage and manipulation
Using message queues
Deployment and management
Azure’s data model

A Microsoft MVP specializing in high-transaction databases,
Chris Hay is a popular speaker and founder of the Cambridge, UK,
.NET usergroup. Brian H. Prince is a Microsoft Architect Evange-
list who helps customers adopt the cloud.

For online access to the authors and a free ebook for owners
of this book, go to manning.com/AzureinAction

$44.99 / Can $51.99 [INCLUDING eBOOK]

Azure IN ACTION

MICROSOFT .NET/CLOUD

Chris Hay Brian H. Prince

“Easy to read, easy to
 recommend.”
 —Eric Nelson, Microsoft UK

“I doubt even the Azure team
 knows all of this.”
 —Mark Monster, Rubicon

“An educational ride at an
 amusement park—great
 information and lots of
 humor.”
 —Michael Wood
 Strategic Data Systems

“Highly recommended, like
 all Manning books.”
 —James Hatheway
 i365, A Seagate Company

“Th is book will get you in the
 cloud... and beyond.”
 —Christian Siegers, Cap Gemini

M A N N I N G

SEE INSERT

	Azure-front
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Roadmap
	About the source code

	Author Online
	about the authors
	about the cover illustration
	Part 1 Welcome to the cloud
	1 Getting to know Windows Azure
	1.1 What’s the Windows Azure platform?
	1.1.1 Windows is in the title, so it must be an operating system
	1.1.2 Hosting and running applications the Azure way

	1.2 Building your first Windows Azure web application
	1.2.1 Setting up your environment
	1.2.2 Creating a new project
	1.2.3 Modifying the web page
	1.2.4 Running the web page

	1.3 Putting all the Azure pieces together
	1.3.1 How the load balancer works
	1.3.2 Creating worker roles
	1.3.3 How the fabric and the Fabric Controller work

	1.4 Storing data in the cloud with Azure
	1.4.1 Understanding Azure’s shared storage mechanism
	1.4.2 Storing and accessing BLOB data
	1.4.3 Messaging via queues
	1.4.4 Storing data in tables

	1.5 Why run in the cloud?
	1.5.1 Treating computing power as a utility service
	1.5.2 Simplified data-center management

	1.6 Inside the Windows Azure platform
	1.6.1 SQL Server capability in the cloud
	1.6.2 Enterprise services in the cloud

	1.7 Summary

	2 Getting to know Windows Azure
	2.1 Getting around the Azure SDK
	2.1.1 Exploring the SDK folders
	2.1.2 Using the Cloud Service project templates
	2.1.3 Running the cloud locally
	2.1.4 How the local and cloud environments differ

	2.2 Taking Hello World to the next level
	2.2.1 Creating the project
	2.2.2 Laying down some markup with XHTML and a CSS
	2.2.3 Binding your data in the code-behind
	2.2.4 Just another place to run your code
	2.2.5 Configuring the Azure service model
	2.2.6 Running the website in the local development fabric

	2.3 Deploying with the Azure portal
	2.3.1 Signing up for Azure
	2.3.2 The Azure portal
	2.3.3 Setting up your service online
	2.3.4 Putting on your logging boots
	2.3.5 Setting up your storage environment
	2.3.6 Packaging and deploying your application
	2.3.7 Moving to production

	2.4 Summary

	Part 2 Understanding the Azure service model
	3 How Windows Azure works
	3.1 The big shift
	3.1.1 The data centers of yore
	3.1.2 The latest Azure data centers
	3.1.3 How many administrators do you need?
	3.1.4 Data center: the next generation

	3.2 Windows Azure, an operating system for the cloud
	3.3 The Fabric Controller
	3.3.1 How the FC works: the driver model
	3.3.2 Resource allocation
	3.3.3 Instance management

	3.4 The service model and you
	3.4.1 Defining configuration
	3.4.2 Adding a custom configuration element
	3.4.3 Centralizing file-reading code
	3.4.4 The many sizes of roles

	3.5 It’s not my fault
	3.5.1 Fault domains
	3.5.2 Update domains
	3.5.3 A service model example

	3.6 Rolling out new code
	3.6.1 Static upgrades
	3.6.2 Rolling upgrades

	3.7 The bare metal
	3.7.1 Free parking
	3.7.2 A special blend of spices
	3.7.3 Creating instances on the fly
	3.7.4 Image is everything

	3.8 The innards of the web role VM
	3.8.1 Exploring the VM details
	3.8.2 The process list
	3.8.3 The hosting process of your website (WaWebHost)
	3.8.4 The health of your web role (RDAgent)

	3.9 Summary

	4 It’s time to run with the service
	4.1 Using the Windows Azure Service Management API
	4.1.1 Adding the ServiceRuntime assembly to your application
	4.1.2 Is your application running in Windows Azure?

	4.2 Defining your service
	4.2.1 The format of the service definition file
	4.2.2 Configuring the endpoint of your web role
	4.2.3 Configuring trust level, instances, and startup action
	4.2.4 Configuring local storage

	4.3 Setting up certificates in Windows Azure
	4.3.1 Generating a certificate
	4.3.2 Adding certificates
	4.3.3 Configuring your HTTPS endpoint to use the certificate

	4.4 Summary

	5 Configuring your service
	5.1 Working with the service configuration file
	5.1.1 The format of the service configuration file
	5.1.2 Configuring standard settings
	5.1.3 Configuring runtime settings

	5.2 Handling configuration at runtime
	5.2.1 Modifying configuration settings in the Azure portal
	5.2.2 Tracking service configuration changes

	5.3 Configuring non-application settings
	5.3.1 Database connection strings
	5.3.2 Application build configuration
	5.3.3 Tweakable configuration
	5.3.4 Endpoint configuration

	5.4 Developing a common code base
	5.4.1 Using the RoleEnvironment.IsAvailable property
	5.4.2 Pluggable configuration settings using inversion of control

	5.5 The RoleEnvironment class and callbacks
	5.6 Summary

	Part 3 Running your site with web roles
	6 Scaling web roles
	6.1 What happens to your web server under extreme load?
	6.1.1 Web server under normal load
	6.1.2 Simulating extreme load
	6.1.3 How the web server responds under extreme load
	6.1.4 Handling increased requests by scaling up or out

	6.2 How the load balancer distributes requests
	6.2.1 Multi-instance sample application
	6.2.2 The development fabric load balancer
	6.2.3 Load balancing in the live environment

	6.3 Session management
	6.3.1 How do sessions work?
	6.3.2 Sample session application
	6.3.3 In-process session management
	6.3.4 Table-storage session state sample provider

	6.4 Cache management
	6.4.1 In-process caching with the ASP.NET cache
	6.4.2 Distributed caching with Memcached
	6.4.3 Cache extensibility in ASP.NET 4.0

	6.5 Summary

	7 Running full-trust, native, and other code
	7.1 Enabling full-trust support
	7.2 FastCGI in Windows Azure
	7.2.1 Enabling FastCGI in your local cloud environment
	7.2.2 Configuring Azure for FastCGI and PHP
	7.2.3 Setting up HelloAzureWorld.php

	7.3 External processes in Windows Azure
	7.3.1 Spawning a sample process
	7.3.2 Using BLOB storage

	7.4 Calling native libraries with P/Invoke
	7.4.1 Getting started
	7.4.2 Calling into the method

	7.5 Summary

	8 The basics of BLOBs
	8.1 Storing files in a scaled-out fashion is a pain in the NAS
	8.1.1 Traditional approaches to BLOB management
	8.1.2 The BLOB service approach to file management

	8.2 A closer look at the BLOB storage service
	8.2.1 Accessing the BLOB (file)
	8.2.2 Setting up a storage account
	8.2.3 Registering custom domain names
	8.2.4 Using containers to store BLOBs

	8.3 Getting started with development storage
	8.3.1 SQL Server backing store
	8.3.2 Getting around in the development storage UI

	8.4 Developing against containers
	8.4.1 Accessing the StorageClient library
	8.4.2 Accessing development storage
	8.4.3 Creating a container
	8.4.4 Listing containers
	8.4.5 Deleting a container

	8.5 Configuring your application to work against the live service
	8.5.1 Switching to the live storage account
	8.5.2 Configuring the access key

	8.6 Summary

	Part 4 Working with BLOB storage
	9 Uploading and downloading BLOBs
	9.1 Using the REST API
	9.1.1 Listing BLOBs in a public container using REST
	9.1.2 Authenticating private requests

	9.2 Managing BLOBs using the StorageClient library
	9.2.1 Listing BLOBs using the storage client
	9.2.2 Uploading BLOBs
	9.2.3 Deleting BLOBs

	9.3 Downloading BLOBs
	9.3.1 Downloading BLOBs from a public container
	9.3.2 Downloading BLOBs from a private container using the storage client

	9.4 Integrating BLOBs with your ASP.NET websites
	9.4.1 Integrating ASP.NET websites with table-driven BLOB content
	9.4.2 Integrating protected, private content

	9.5 Using local storage with BLOB storage
	9.5.1 Using a local cache
	9.5.2 Defining and accessing local storage
	9.5.3 Updating your HTTP handler to use local storage
	9.5.4 Checking properties of a BLOB without downloading it
	9.5.5 Improving your handler to check the last modified time
	9.5.6 Adding and returning custom metadata

	9.6 Copying BLOBs
	9.6.1 Copying files via the StorageClient library

	9.7 Setting shared access permissions
	9.7.1 Setting shared access permissions on a container

	9.8 Summary

	10 When the BLOB stands alone
	10.1 Hosting static HTML websites
	10.1.1 Creating a static HTML website
	10.1.2 Publishing your website to BLOB services

	10.2 Hosting Silverlight applications in BLOB storage
	10.2.1 Hosting the Silverlight Spectrum emulator
	10.2.2 Communicating with third-party sites

	10.3 Using BLOB storage as a media server
	10.3.1 Building a Silverlight or WPF video player
	10.3.2 A WPF-based adaptive-streaming video player
	10.3.3 A Silverlight-based chunking media player

	10.4 Content delivery networks
	10.4.1 What’s a CDN?
	10.4.2 CDN performance advantages
	10.4.3 Using the Windows Azure CDN

	10.5 Summary

	11 The Table service, a whole different entity
	11.1 A brief overview of the Table service
	11.2 How we’d normally represent entities outside of Azure
	11.2.1 How we’d normally represent an entity in C#
	11.2.2 How we’d normally store an entity in SQL Server
	11.2.3 Mapping an entity to a SQL Server database

	11.3 Modifying an entity to work with the Table service
	11.3.1 Modifying an entity definition
	11.3.2 Table service representation of products
	11.3.3 Storing completely different entities

	11.4 Partitioning data across lots of servers
	11.4.1 Partitioning the storage account
	11.4.2 Partitioning tables

	11.5 Developing with the Table service
	11.5.1 Creating a project
	11.5.2 Defining an entity
	11.5.3 Creating a table

	11.6 Doing CRUDy stuff with the Table service
	11.6.1 Creating a context class
	11.6.2 Adding entities
	11.6.3 Listing entities
	11.6.4 Deleting entities
	11.6.5 Updating entities

	11.7 Summary

	Part 5 Working with structured data
	12 Working with the Table service REST API
	12.1 Performing storage account operations using REST
	12.1.1 Listing tables in the development storage account using the REST API
	12.1.2 Deleting tables using the REST API
	12.1.3 WCF Data Services and AtomPub
	12.1.4 Creating a table using the REST API

	12.2 Authenticating requests against the Table service
	12.2.1 Shared Key authentication
	12.2.2 Shared Key Lite authentication

	12.3 Modifying entities with the REST API is CRUD
	12.3.1 Inserting entities
	12.3.2 Deleting entities
	12.3.3 Updating entities

	12.4 Batching data
	12.4.1 Entity group transactions
	12.4.2 Retries

	12.5 Querying data
	12.5.1 Retrieving all entities in a table using the REST API
	12.5.2 Querying with LINQ
	12.5.3 Filtering data with the REST API
	12.5.4 Filtering data with LINQ
	12.5.5 Selecting data using the LINQ syntax
	12.5.6 Paging data

	12.6 Summary

	13 SQL Azure and relational data
	13.1 The march of SQL Server to the cloud
	13.2 Setting up SQL Azure
	13.2.1 Creating your database
	13.2.2 Connecting to your database

	13.3 Size matters
	13.3.1 Partitioning your data
	13.3.2 Sharding your data for easier scale

	13.4 How SQL Azure works
	13.4.1 SQL Azure from a logical viewpoint
	13.4.2 SQL Azure from a physical viewpoint

	13.5 Managing your database
	13.5.1 Moving your data
	13.5.2 Controlling access to your data with the firewall
	13.5.3 Creating user accounts

	13.6 Migrating an application to SQL Azure
	13.6.1 Migrating the traditional way
	13.6.2 Migrating with the wizard

	13.7 Limitations of SQL Azure
	13.8 Common SQL Azure scenarios
	13.8.1 Far-data scenarios
	13.8.2 Near-data scenarios
	13.8.3 SQL Azure versus Azure Tables

	13.9 Summary

	14 Working with different types of data
	14.1 Static reference data
	14.1.1 Representing simple static data in SQL Azure
	14.1.2 Representing simple static data in the Table service
	14.1.3 Performance disadvantages of a chatty interface
	14.1.4 Caching static data

	14.2 Storing static reference data with dynamic data
	14.2.1 Representing the shopping cart in SQL Azure
	14.2.2 Partitioning the SQL Azure shopping cart
	14.2.3 Representing the shopping cart’s static data in the Table service

	14.3 Joining dynamic and infrequently changing data together
	14.3.1 Duplicating data instead of joining
	14.3.2 Client-side joining of uncached data

	14.4 Summary

	Part 6 Doing work with messages
	15 Processing with worker roles
	15.1 A simple worker role service
	15.1.1 No more Hello World

	15.2 Communicating with a worker role
	15.2.1 Consuming messages from a queue
	15.2.2 Exposing a service to the outside world
	15.2.3 Inter-role communication

	15.3 Common uses for worker roles
	15.3.1 Offloading work from the frontend
	15.3.2 Using threads in a worker role
	15.3.3 Simulating worker roles in a web role
	15.3.4 State-directed workers

	15.4 Working with local storage
	15.4.1 Setting up local storage
	15.4.2 Working with local storage

	15.5 Summary

	16 Messaging with the queue
	16.1 Decoupling your system with messaging
	16.1.1 How messaging works
	16.1.2 What is a message?
	16.1.3 What is a queue?
	16.1.4 StorageClient and the REST API

	16.2 Working with basic queue operations
	16.2.1 Get a list of queues
	16.2.2 Creating a queue
	16.2.3 Attaching metadata
	16.2.4 Deleting a queue

	16.3 Working with messages
	16.3.1 Putting a message on the queue
	16.3.2 Peeking at messages
	16.3.3 Getting messages
	16.3.4 Deleting messages

	16.4 Understanding message visibility
	16.4.1 About message visibility and invisibility
	16.4.2 Setting visibility timeout
	16.4.3 Planning on failure
	16.4.4 Use idempotent processing code

	16.5 Patterns for message processing
	16.5.1 Shared counters
	16.5.2 Work complete receipt
	16.5.3 Asymmetric queues versus symmetric queues
	16.5.4 Truncated exponential backoff
	16.5.5 Queue creation on startup
	16.5.6 Dynamic queues versus static queues
	16.5.7 Ordered delivery
	16.5.8 Long queues
	16.5.9 Dynamically scaling to meet queue demand

	16.6 Summary

	17 Connecting in the cloud with AppFabric
	17.1 The road AppFabric has traveled
	17.1.1 The two AppFabrics
	17.1.2 Two key AppFabric services

	17.2 Controlling access with ACS
	17.2.1 Identity in the cloud
	17.2.2 Working with actors
	17.2.3 Tokens communicate authorization
	17.2.4 Making claims about who you are

	17.3 Example: A return to our string-reversing service
	17.3.1 Putting ACS in place
	17.3.2 Reviewing the string-reversal service
	17.3.3 Accepting tokens from ACS
	17.3.4 Checking the token
	17.3.5 Sending a token as a client
	17.3.6 Attaching the token
	17.3.7 Configuring the ACS namespace
	17.3.8 Putting it all together

	17.4 Connecting with the Service Bus
	17.4.1 What is a Service Bus?
	17.4.2 Why an ESB is a good idea in the cloud

	17.5 Example: Listening for messages on the bus
	17.5.1 Connecting the service to the bus
	17.5.2 Connecting to the service

	17.6 The future of AppFabric
	17.7 Summary

	18 Running a healthy service in the cloud
	18.1 Diagnostics in the cloud
	18.1.1 Using Azure Diagnostics to find what’s wrong
	18.1.2 Challenges with troubleshooting in the cloud

	18.2 Diagnostics in the cloud is just like normal (almost)
	18.2.1 Managing event sources
	18.2.2 It’s not just for diagnostics

	18.3 Configuring the diagnostic agent
	18.3.1 Default configuration
	18.3.2 Diagnostic host configuration
	18.3.3 The other data sources
	18.3.4 Arbitrary diagnostic sources

	18.4 Transferring diagnostic data
	18.4.1 Scheduled transfer
	18.4.2 On-demand transfer

	18.5 Using the service management API
	18.5.1 What the API doesn’t do
	18.5.2 Setting up the management credentials
	18.5.3 Listing your services and containers
	18.5.4 Automating a deployment
	18.5.5 Changing configuration and dynamically scaling your application

	18.6 Better together for scaling
	18.6.1 The thermostat
	18.6.2 The control system
	18.6.3 Risks and managing them
	18.6.4 Managing service health

	18.7 Summary

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Azure-back

